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An overview of some analytical approaches to the computation of the struc-
tural and thermodynamic properties of single component and multicompo-
nent hard-sphere fluids is provided. For the structural properties, they yield
a thermodynamically consistent formulation, thus improving and extending
the known analytical results of the Percus–Yevick theory. Approximate ex-
pressions for the contact values of the radial distribution functions and the
corresponding analytical equations of state are also discussed. Extensions of
this methodology to related systems, such as sticky hard spheres and square-
well fluids, as well as its use in connection with the perturbation theory of
fluids are briefly addressed.

6.1 Introduction

In the statistical thermodynamic approach to the theory of simple liquids,
there is a close connection between the thermodynamic and the structural
properties [1, 2, 3, 4]. These properties depend on the intermolecular poten-
tial of the system, which is generally assumed to be well represented by pair
interactions. The simplest model pair potential is that of a hard-core fluid
(rods, disks, spheres, hyperspheres) in which attractive forces are completely
neglected. In fact, it is a model that has been most studied and has rendered
some analytical results, although up to this day no general (exact) explicit ex-
pression for the equation of state is available, except for the one-dimensional
case. Something similar applies to the structural properties. An interesting
feature concerning the thermodynamic properties is that in hard-core sys-
tems the equation of state depends only on the contact values of the radial
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distribution functions. In the absence of a completely analytical approach, the
most popular methods to deal with both kinds of properties of these systems
are integral equation theories and computer simulations.

It is well known that in real gases and liquids at high temperatures, the
state and thermodynamic properties are determined almost entirely by the
repulsive forces among molecules. At lower temperatures, attractive forces
become significant, but even in this case they affect very little the configu-
ration of the system at moderate and high densities. These facts are taken
into account in the application of the perturbation theory of fluids, where
hard-core fluids are used as the reference systems in the computation of the
thermodynamic and structural properties of real fluids. However, successful
results using perturbation theory are rather limited due to the fact that, as
mentioned above, there are in general no exact (analytical) expressions for
the thermodynamic and structural properties of the reference systems which
are in principle required in the calculations. On the other hand, in the realm
of soft condensed matter the use of the hard-sphere model in connection, for
instance, with sterically stabilized colloidal systems is quite common. This
is due to the fact that nowadays it is possible to prepare (almost) monodis-
perse spherical colloidal particles with short-ranged harshly repulsive inter-
particle forces that may be well described theoretically with the hard-sphere
potential.

This chapter presents an overview of the efforts we have made over the
last few years to compute the thermodynamic and structural properties of
hard-core systems using relatively simple (approximate) analytical methods.
It is structured as follows. In Sect. 6.2, we describe our proposals to derive
the contact values of the radial distribution functions of a multicomponent
mixture (with an arbitrary size distribution, either discrete or continuous) of
d-dimensional hard spheres (HS) from the use of some consistency conditions
and the knowledge of the contact value of the radial distribution function of
the corresponding single component system. In turn, these contact values lead
to equations of state both for additive and for non-additive HS. Some conse-
quences of such equations of state, in particular the demixing transition, are
briefly analyzed. This is followed in Sect. 6.3 by the description of the Ratio-
nal Function Approximation method to obtain analytical expressions for the
structural quantities of three-dimensional single component and multicompo-
nent fluids. The only required inputs in this approach are the contact values of
the radial distribution functions and so the connection with the work of the
previous section follows naturally. Structural properties of related systems,
like sticky HS or square-well fluids, that may also be tackled with the same
philosophy are also discussed in Sect. 6.4. Section 6.5 provides an account of
the reformulation of the perturbation theory of liquids using the results of the
Rational Function Approximation method for a single component hard-sphere
fluid and its illustration in the case of the Lennard–Jones fluid. In the final
section, we provide some perspectives of the achievements obtained so far and
of the challenges that remain ahead.
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6.2 Contact Values and Equations of State for Mixtures

As stated in the Introduction, a nice feature of hard-core fluids is that the
expressions of all their thermodynamic properties in terms of the radial distri-
bution functions (RDF) are particularly simple. In fact, for these systems the
internal energy reduces to that of the ideal gas and in the pressure equation it
is only the contact values rather than the full RDF which appear explicitly. In
this section, we present our approach to the derivation of the contact values
of hard-core fluid mixtures in d dimensions.

6.2.1 Additive Systems in d Dimensions

As defined in Chap. 5, if σij denotes the distance of separation at contact
between the centers of two interacting fluid particles, one of species i and the
other of species j, the mixture is said to be additive if σij is just the arithmetic
mean of the hard-core diameters of each species. Otherwise, the system is non-
additive. The system of additive HS has been described in detail in Chap. 5.
In this section and in Sect. 6.2.2 we deal again with such a system using a
somewhat different perspective, while non-additive hard-core mixtures will be
treated in Sect. 6.2.3.

Definitions

Let us consider an additive mixture of HS in d dimensions with an arbitrary
number N of components. In fact, our discussion will remain valid forN → ∞,
i.e., for polydisperse mixtures with a continuous distribution of sizes.

The additive hard core of the interaction between a sphere of species i and
a sphere of species j is σij = 1

2 (σi + σj), where the diameter of a sphere of
species i is σii = σi. Let the number density of the mixture be ρ and the mole
fraction of species i be xi = ρi/ρ, where ρi is the number density of species i.
From these quantities one can define the packing fraction η = vdρMd, where
vd = (π/4)d/2/Γ (1 + d/2) is the volume of a d-dimensional sphere of unit
diameter and

Mn ≡ 〈σn〉 =
N∑

i=1

xiσ
n
i (6.1)

denotes the nth moment of the diameter distribution.
In an HS mixture, the knowledge of the contact values gij(σij) of the RDF

gij(r), where r is the distance, is important for a number of reasons. For
example, the availability of gij(σij) is sufficient to get the equation of state
(EOS) of the mixture via the virial expression

Z(η) = 1 +
2d−1

Md
η

N∑
i,j=1

xixjσ
d
ijgij(σij) , (6.2)
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where Z = p/ρkBT is the compressibility factor of the mixture, p being the
pressure, kB the Boltzmann constant, and T the absolute temperature.

The exact form of gij(σij) as functions of the packing fraction η, the set
of diameters {σk}, and the set of mole fractions {xk} is only known in the
one-dimensional case, where one simply has [5]

gij(σij) =
1

1 − η
, (d = 1) . (6.3)

Consequently, for d ≥ 2, one has to resort to approximate theories or empirical
expressions. For hard-disk mixtures, an accurate expression is provided by
Jenkins and Mancini’s (JM) approximation [6, 7, 8],

gJM
ij (σij) =

1
1 − η

+
9
16

η

(1 − η)2
σiσjM1

σijM2
, (d = 2) . (6.4)

The associated compressibility factor is

ZJM(η) =
1

1 − η
+
M2

1

M2
η

1 + η/8
(1 − η)2

, (d = 2) . (6.5)

In the case of three-dimensional systems, some important analytical expres-
sions for the contact values and the corresponding compressibility factor also
exist. For instance, the expressions which follow from the solution of the
Percus–Yevick (PY) equation of additive HS mixtures by Lebowitz [9] are

gPY
ij (σij) =

1
1 − η

+
3
2

η

(1 − η)2
σiσjM2

σijM3
, (d = 3) , (6.6)

ZPY(η) =
1

1 − η
+
M1M2

M3

3η
(1 − η)2

+
M3

2

M2
3

3η2

(1 − η)2
, (d = 3) . (6.7)

Also analytical are the results obtained from the Scaled Particle Theory (SPT)
[10, 11, 12, 13, 14, 15],

gSPT
ij (σij) =

1
1 − η

+
3
2

η

(1 − η)2
σiσjM2

σijM3
+

3
4

η2

(1 − η)3

(
σiσjM2

σijM3

)2

, (d = 3) ,

(6.8)

ZSPT(η) =
1

1 − η
+
M1M2

M3

3η
(1 − η)2

+
M3

2

M2
3

3η2

(1 − η)3
, (d = 3) . (6.9)

Neither the PY nor the SPT lead to particularly accurate values and so
Boubĺık [16] and, independently, Grundke and Henderson [17] and Lee and
Levesque [18] proposed an interpolation between the PY and the SPT contact
values that we will refer to as the BGHLL values:

gBGHLL
ij (σij) =

1
1 − η

+
3
2

η

(1 − η)2
σiσjM2

σijM3
+

1
2

η2

(1 − η)3

(
σiσjM2

σijM3

)2

, (d = 3) .

(6.10)
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This leads through Eq. (6.2) to the widely used and rather accurate Boubĺık–
Mansoori–Carnahan–Starling–Leland (BMCSL) EOS [16, 19] for HS mixtures:

ZBMCSL(η) =
1

1 − η
+
M1M2

M3

3η
(1 − η)2

+
M3

2

M2
3

η2(3 − η)
(1 − η)3

, (d = 3). (6.11)

Refinements of the BGHLL values have been subsequently introduced, among
others, by Henderson et al. [20, 21, 22, 23, 24, 25, 26, 27, 28], Matyushov and
Ladanyi [29], and Barrio and Solana [30] (for this latter see also Chap. 5)
to eliminate some drawbacks of the BMCSL EOS in the so-called colloidal
limit of binary HS mixtures. On a different path, but also having to do with
the colloidal limit, Viduna and Smith [31, 32] have proposed a method to
obtain contact values of the RDF of HS mixtures from a given EOS. However,
none of these proposals may be easily generalized so as to be valid for any
dimensionality and any number of components. Therefore, if one wants to have
a more general framework able to deal with arbitrary d and N an alternative
strategy is called for.

Universality Ansatz

In order to follow our alternative strategy, it is useful to make use of exact
limit results that can help one in the construction of approximate expressions
for gij(σij). Let us consider first the limit in which one of the species, say i,
is made of point particles, i.e., σi → 0. In that case, gii(σi) takes the ideal
gas value, except that one has to take into account that the available volume
fraction is 1 − η. Thus,

lim
σi→0

gii(σi) =
1

1 − η
. (6.12)

An even simpler situation occurs when all the species have the same size,
{σk} → σ, so that the system becomes equivalent to a single component
system. Therefore,

lim
{σk}→σ

gij(σij) = gs , (6.13)

where gs is the contact value of the RDF of the single component fluid at
the same packing fraction η as that of the mixture. Table 6.1 lists some of
the most widely used proposals for the contact value gs and the associated
compressibility factor

Zs = 1 + 2d−1ηgs (6.14)

in the case of the single component HS fluid. A more comprehensive list of
expressions for the compressibility factor was provided in Chap. 3.

Equations (6.12) and (6.13) represent the simplest and most basic condi-
tions that gij(σij) must satisfy. As already pointed out in Chap. 5, there are
a number of other less trivial consistency conditions [14, 20, 23, 24, 25, 26,
29, 30, 33, 34, 35], some of which will be used later on.
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Table 6.1. Some expressions of gs and Zs for the single component HS fluid. In the
SHY proposal, ηcp = (

√
3/6)π is the crystalline close-packing fraction for hard disks.

In the LM proposal, b3 and b4 are the (reduced) third and fourth virial coefficients,
ζ(η) = 1.2973(59)−0.062(13)η/ηcp for d = 4, and ζ(η) = 1.074(16)+0.163(45)η/ηcp

for d = 5, where the values of the close-packing fractions are ηcp = π2/16 � 0.617
and ηcp = π2

√
2/30 � 0.465 for d = 4 and d = 5, respectively

d gs Zs Label Ref.

2
1 − 7η/16

(1 − η)2
1 + η2/8

(1 − η)2
H [36]

2
1 − η(2ηcp − 1)/2η2

cp

1 − 2η + η2(ηcp − 1)/2η2
cp

1

1 − 2η + η2(ηcp − 1)/2η2
cp

SHY [37, 38]

2 gH
s − η3

27(1 − η)4
ZH

s − η4

26(1 − η)4
L [39, 40, 41]

3
1 + η/2

(1 − η)2
1 + 2η + 3η2

(1 − η)2
PY [42, 43]

3
1 − η/2 + η2/4

(1 − η)3
1 + η + η2

(1 − η)3
SPT [10, 11, 12]

3
1 − η/2

(1 − η)3
1 + η + η2 − η3

(1 − η)3
CS [44]

4, 5
1 + [21−db3 − ζ(η)b4/b3]η

1 − ζ(η)(b4/b3)η + [ζ(η) − 1] 21−db4η2
1 + 2d−1ηgLM

s LM [45]

In order to proceed, in line with a property shared by earlier proposals
[see, in particular, Eqs. (6.4), (6.6), (6.8), and (6.10)], we assume that, at a
given packing fraction η, the dependence of gij(σij) on the parameters {σk}
and {xk} takes place only through the scaled quantity

zij ≡ σiσj

σij

Md−1

Md
. (6.15)

More specifically, we assume

gij(σij) = G(η, zij) , (6.16)

where the function G(η, z) is universal in the sense that it is a common func-
tion for all the pairs (i, j), regardless of the composition and number of compo-
nents of the mixture. Of course, the function G(η, z) is in principle different for
each dimensionality d. To clarify the implications of this universality ansatz,
let us imagine two mixtures M and M′ having the same packing fraction
η but strongly differing in the set of mole fractions, the sizes of the parti-
cles, and even the number of components. Suppose now that there exists a
pair (i, j) in mixture M and another pair (i′, j′) in mixture M′ such that
zij = zi′j′ . Then, according to Eq. (6.16), the contact value of the RDF for
the pair (i, j) in mixture M is the same as that for the pair (i′, j′) in mixture
M′, i.e., gij(σij) = gi′j′(σi′j′). In order to ascribe a physical meaning to the
parameter zij , note that the ratio Md−1/Md can be understood as a “typ-
ical” inverse diameter (or curvature) of the particles of the mixture. Thus,
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z−1
ij = 1

2 (σ−1
i + σ−1

j )/(Md−1/Md) represents the arithmetic mean curvature,
in units of Md−1/Md, of a particle of species i and a particle of species j.

Once the ansatz (6.16) is adopted, one may use the limits in (6.12) and
(6.13) to get G(η, z) at z = 0 and z = 1, respectively. Since zii → 0 in the
limit σi → 0, insertion of Eq. (6.12) into (6.16) yields

G(η, 0) =
1

1 − η
≡ G0(η) . (6.17)

Next, if all the diameters are equal, zij → 1, so that Eq. (6.13) implies that

G(η, 1) = gs . (6.18)

Linear Approximation

As the simplest approximation [46], one may assume a linear dependence of
G on z that satisfies the basic requirements (6.17) and (6.18), namely

G(η, z) =
1

1 − η
+
(
gs −

1
1 − η

)
z . (6.19)

Inserting this into Eq. (6.16), one has

ge1
ij (σij) =

1
1 − η

+
(
gs −

1
1 − η

)
Md−1

Md

σiσj

σij
. (6.20)

Here, the label “e1” is meant to indicate that (i) the contact values used are
an extension of the single component contact value gs and that (ii) G(η, z) is a
linear polynomial in z. This notation will become handy below. Although the
proposal (6.20) is rather crude and does not produce especially accurate results
for gij(σij) when d ≥ 3, it nevertheless leads to an EOS that exhibits an excel-
lent agreement with simulations in 2, 3, 4, and 5 dimensions, provided that an
accurate gs is used as input [46, 47, 48, 49, 50]. This EOS may be written as

Ze1(η) = 1 +
η

1 − η
2d−1(Ω0 −Ω1) + [Zs(η) − 1]Ω1 , (6.21)

where the coefficients Ωm depend only on the composition of the mixture and
are defined by

Ωm = 2−(d−m) M
m
d−1

Mm+1
d

d−m∑
n=0

(
d−m

n

)
Mn+mMd−n . (6.22)

In particular, for d = 2 and d = 3,

Ze1(η) =
1

1 − η
+
M2

1

M2

[
Zs(η) −

1
1 − η

]
, (d = 2) , (6.23)
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Ze1(η) =
1

1 − η
+
M1M2

2M3

{[
Zs(η) −

1
1 − η

](
1 +

M2
2

M1M3

)

+
3η

1 − η

(
1 − M2

2

M1M3

)}
, (d = 3). (6.24)

As an extra asset, from Eq. (6.21) one may write the virial coefficients of
the mixture Bn, defined by

Z = 1 +
∞∑

n=1

Bn+1ρ
n , (6.25)

in terms of the (reduced) virial coefficients of the single component fluid bn
defined by

Zs = 1 +
∞∑

n=1

bn+1η
n . (6.26)

The result is

Bn = vn−1
d Mn−1

d

[
Ω1bn + 2d−1(Ω0 −Ω1)

]
. (6.27)

In the case of binary mixtures, these coefficients are in very good agreement
with the available exact and simulation results [46, 48], except when the mix-
ture involves components of very disparate sizes, especially for high dimen-
sionalities. One may perform a slight modification such that this deficiency
is avoided and thus get a modified EOS [48, 51, 52]. For d = 2 and d = 3 it
reads

Z(η) = Zs(η) + x1

[
1

1 − η2
Zs

(
η1

1 − η2

)
− Zs(η)

](
σ2 − σ1

σ2

)d−1

+ x2

[
1

1 − η1
Zs

(
η2

1 − η1

)
− Zs(η)

](
σ1 − σ2

σ1

)d−1

, (d = 2, 3),

(6.28)

where ηi = vdρiσ
d
i is the partial volume packing fraction due to species

i. In contrast to most of the approaches (PY, SPT, BMCSL, e1, . . . ), the
proposal (6.28) expresses Z(η) in terms not only of Zs(η) but also involves
Zs

(
η1

1−η2

)
and Zs

(
η2

1−η1

)
. Equation (6.28) should in principle be useful in

particular for binary mixtures involving components of very disparate sizes.
However, it is slightly less accurate than the one given in Eq. (6.21) for ordi-
nary mixtures [48].

Quadratic Approximation

In order to improve the proposal contained in Eq. (6.20), in addition to the
consistency requirements (6.12) and (6.13), one may consider the condition
stemming from a binary mixture in which one of the species (say i = 1) is
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much larger than the other one (i.e., σ1/σ2 → ∞), but occupies a negligible
volume (i.e., x1(σ1/σ2)d → 0). In that case, a sphere of species 1 is felt as a
wall by particles of species 2, so that [20, 26, 53, 54]

lim
σ1/σ2→∞

x1(σ1/σ2)d→0

[
g12(σ12) − 2d−1ηg22(σ2)

]
= 1 . (6.29)

Hence, in the limit considered in Eq. (6.29), we have z22 → 1, z12 → 2. Con-
sequently, under the universality ansatz (6.16), one may rewrite Eq. (6.29) as

G(η, 2) = 1 + 2d−1ηG(η, 1) . (6.30)

Thus, Eqs. (6.17), (6.18), and (6.30) provide complete information on the
function G at z = 0, z = 1, and z = 2, respectively, in terms of the contact
value gs of the single component RDF.

The simplest functional form of G that complies with the above consistency
conditions is a quadratic function of z [55]:

G(η, z) = G0(η) + G1(η)z + G2(η)z2 , (6.31)

where the coefficients G1(η) and G2(η) are explicitly given by

G1(η) = (2 − 2d−2η)gs −
2 − η/2
1 − η

, (6.32)

G2(η) =
1 − η/2
1 − η

− (1 − 2d−2η)gs . (6.33)

Therefore, the explicit expression for the contact values is

ge2
ij (σij) =

1
1 − η

+
[
(2 − 2d−2η)gs −

2 − η/2
1 − η

]
Md−1

Md

σiσj

σij

+
[
1 − η/2
1 − η

− (1 − 2d−2η)gs

](
Md−1

Md

σiσj

σij

)2

. (6.34)

Following the same criterion as the one used in connection with Eq. (6.20), the
label “e2” is meant to indicate that (i) the resulting contact values represent
an extension of the single component contact value gs and that (ii) G(η, z)
is a quadratic polynomial in z. Of course, the quadratic form (6.31) is not
the only choice compatible with conditions (6.17), (6.18), and (6.30). For
instance, a rational function was also considered in [55]. However, although it
is rather accurate, it does not lead to a closed form for the EOS. In contrast,
when Eq. (6.34) is inserted into Eq. (6.2), one gets a closed expression for
the compressibility factor in terms of the packing fraction η and the first few
moments Mn, n ≤ d. The result is

Ze2(η) = 1 + 2d−2 η

1 − η
[2(Ω0 − 2Ω1 +Ω2) + (Ω1 −Ω2)η]

+ [Zs(η) − 1]
[
2Ω1 −Ω2 + 2d−2(Ω2 −Ω1)η

]
, (6.35)
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where the quantities Ωm are defined in Eq. (6.22). Quite interestingly, in the
two-dimensional case Eq. (6.35) reduces to Eq. (6.23), i.e.,

Ze1(η) = Ze2(η), (d = 2) . (6.36)

This illustrates the fact that two different proposals for the contact values
gij(σij) can yield the same EOS when inserted into Eq. (6.2). On the other
hand, for three-dimensional mixtures Eq. (6.35) becomes

Ze2(η) =
1

1 − η
+
M1M2

M3

(
1 − η +

M2
2

M1M3
η

)[
Zs(η) −

1
1 − η

]
, (d = 3),

(6.37)
which differs from Eq. (6.24). In fact,

Ze1(η)−Ze2(η) =
M1M2

2M3

(
1 − M2

2

M1M3

)[
1 + η

1 − η
− (1 − 2η)Zs(η)

]
, (d = 3) .

(6.38)

Specific Examples

In this subsection, rather than carrying out an exhaustive comparison with
the wealth of results available in the literature, we will consider only a few
representative examples. In particular, for d = 3, we will restrict ourselves to
a comparison with classical proposals (say BGHLL, PY, and SPT for the
contact values). The comparison with more recent ones may be found in
[46, 55, 56, 57].

Thus far the development has been rather general since gs remains free in
Eqs. (6.20) and (6.34). In order to get specific results, it is necessary to fix
gs [cf. Table 6.1]. In the one-dimensional case, one has gs = 1/(1 − η) and
so one gets the exact result (6.3) after substitution into Eq. (6.20). Similarly,
Eqs. (6.32) and (6.33) lead to G1 = G2 = 0 and so we recover again the exact
result.

If in the two-dimensional case we take Henderson’s value [36] gs = gH
s , then

the linear approximation (6.20) reduces to the JM approximation, Eq. (6.4).
This equivalence can be symbolically represented as geH1

ij = gJM
ij , where the

label “eH1” refers to the extension of Henderson’s single component value in
the linear approximation. While gJM

ij is very accurate, even better results are
provided by the quadratic form (6.34), especially if Luding’s value [39, 40, 41]
gs = gL

s is used [58].
In the three-dimensional case, Eq. (6.20) is of the form of the solution

of the PY equation [9]. In fact, insertion of gs = gPY
s leads to Eq. (6.6),

i.e., gePY1
ij = gPY

ij . Similarly, if the SPT expression [10, 11, 12] gs = gSPT
s is

used for the single component contact value in the quadratic approximation
(6.34), we reobtain the SPT expression for the mixture, Eq. (6.8). In other
words, geSPT2

ij = gSPT
ij . On the other hand, if the much more accurate CS [44]

expression gs = gCS
s is used as input, we arrive at the following expression:



6 Alternative Approaches to Hard-Sphere Liquids 193

geCS2
ij =

1
1 − η

+
3
2
η(1 − η/3)
(1 − η)2

σiσjM2

σijM3
+
η2(1 − η/2)

(1 − η)3

(
σiσjM2

σijM3

)2

, (d = 3) ,

(6.39)
which is different from the BGHLL one, Eq. (6.10), improves the latter for
zij > 1, and leads to similar results for zij < 1, as comparison with computer
simulations shows [55]. The four approximations (6.6), (6.8), (6.10), and (6.39)
are consistent with conditions (6.12) and (6.13), but only the SPT and eCS2
are also consistent with condition (6.29). It should also be noted that if one
considers a binary mixture in the infinite solute dilution limit, namely x1 → 0,
so that z12 → 2/(1 + σ2/σ1), Eq. (6.39) yields the same result for g12(σ12)
as the one proposed by Matyushov and Ladanyi [29] for this quantity on the
basis of exact geometrical relations. However, the extension that the same
authors propose when there is a non-vanishing solute concentration, i.e., for
x1 �= 0, is different from Eq. (6.39).

Equation (6.34) can also be used in the case of hyperspheres (d ≥ 4) [55]. In
particular, a very good agreement with available computer simulations [49] is
obtained for d = 4 and d = 5 by using Luban and Michels [45] value gs = gLM

s .
Now we turn to the compressibility factors (6.21) and (6.35), which are

obtained from the contact values (6.20) and (6.34), respectively. Since they
depend on the details of the composition through the d first moments, they
are meaningful even for continuous polydisperse mixtures.

As said above, in the two-dimensional case both Eqs. (6.21) and (6.35)
reduce to Eq. (6.23), which yields very accurate results when a good Zs is used
as input [50, 55, 58]. For three-dimensional mixtures, insertion of Zs = ZCS

s

in Eqs. (6.24) and (6.37) yields

ZeCS1(η) = ZBMCSL(η) +
η3M2

(1 − η)3M2
3

(
M1M3 −M2

2

)
, (d = 3) , (6.40)

ZeCS2(η) = ZBMCSL(η) − η3M2

(1 − η)2M2
3

(
M1M3 −M2

2

)
, (d = 3) , (6.41)

where ZBMCSL(η) is given by Eq. (6.11). Note that ZeCS1(η) > ZBMCSL(η) >
ZeCS2(η). Since simulation data indicate that the BMCSL EOS tends to under-
estimate the compressibility factor, it turns out that, as illustrated in Fig. 6.1
for an equimolar binary mixture with σ2/σ1 = 0.6, the performance of ZeCS1

is, paradoxically, better than that of ZeCS2 [55], despite the fact that the
underlying linear approximation for the contact values is much less accurate
than the quadratic approximation. This shows that a rather crude approxi-
mation such as Eq. (6.20) may lead to an extremely good EOS [46, 48, 49, 50],
which, as clearly seen in Fig. 6.1, represents a substantial improvement over
the classical proposals. Interestingly, the EOS corresponding to ZeCS1 has re-
cently been independently derived as the second-order approximation of the
Fundamental Measure Theory for the HS fluid by Hansen–Goos and Roth [60].

In the case of d = 4 and d = 5, use of Zs(η) = ZLM
s (η) in Eq. (6.21) pro-

duces a simple extended EOS of a mixture of hard additive hyperspheres in
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Fig. 6.1. Deviation of the compressibility factor from the BMCSL value, as a func-
tion of the packing fraction η for an equimolar three-dimensional binary mixture
with σ2/σ1 = 0.6. The open [21, 22] and closed [59] circles are simulation data. The
lines are the PY EOS (– · · –), the SPT EOS (– · – ·), the eCS1 EOS (· · · ), and the
eCS2 EOS (– – –)

these dimensionalities. The accuracy of these two EOS for hard hypersphere
mixtures in the fluid region has been confirmed by simulation data [49] for a
wide range of compositions and size ratios. In Fig. 6.2, this accuracy is ex-
plicitly exhibited in the case of three equimolar mixtures, two in 4D and one
in 5D.

6.2.2 A More Consistent Approximation for Three-Dimensional
Additive Mixtures

Up to this point, we have considered an arbitrary dimensionality d and have
constructed, under the universality assumption (6.16), the accurate quadratic

Fig. 6.2. Compressibility factor for three equimolar mixtures in 4D and 5D systems.
Lines are the eLM1 predictions, while symbols are simulation data [49]



6 Alternative Approaches to Hard-Sphere Liquids 195

approximation (6.34), which fulfills the consistency conditions (6.12), (6.13),
and (6.29). However, there exist extra consistency conditions that are not
necessarily satisfied by (6.34). In particular, when the mixture is in contact
with a hard wall, the state of equilibrium imposes that the pressure evaluated
near the wall by considering the impacts with the wall must be the same as
the pressure in the bulk evaluated from the particle–particle collisions. This
consistency condition is especially important if one is interested in deriving
accurate expressions for the contact values of the particle–wall correlation
functions.

Since a hard wall can be seen as a sphere of infinite diameter, the contact
value gwj of the correlation function of a sphere of diameter σj with the wall
can be obtained from gij(σij) as

gwj = lim
σi→∞

xiσd
i →0

gij(σij) . (6.42)

Note that gwj provides the ratio between the density of particles of species
j adjacent to the wall and the density of those particles far away from the
wall. The sum rule connecting the pressure of the fluid and the above contact
values is [61]

Zw(η) =
N∑

j=1

xjgwj , (6.43)

where the subscript w in Zw has been used to emphasize that Eq. (6.43)
represents a route alternative to the virial one, Eq. (6.2), to get the EOS of the
HS mixture. The condition Z = Zw is equivalent to (6.29) in the special case
where one has a single fluid in the presence of the wall. However, in the general
case of a mixture plus a wall, the condition Z = Zw is stronger than Eq. (6.29).
In the two-dimensional case, it turns out that the quadratic approximation
(6.34) already satisfies the requirement Z = Zw, regardless of the density and
composition of the mixture [58]. However, this is not the case for d ≥ 3.

Our problem now consists of computing gij(σij) and the associated gwj for
the HS mixture in the presence of a hard wall, so that the condition Z = Zw is
satisfied for an arbitrary mixture [56, 57]. Due to the mathematical complexity
of the problem, here we will restrict ourselves to three-dimensional systems
(d = 3). Similarly to what we did in the preceding subsection, we consider a
class of approximations of the universal type (6.16), so that conditions (6.12)
and (6.13) lead again to Eqs. (6.17) and (6.18), respectively. Notice that Eq.
(6.16) implies in particular that

gwj = G(η, zwj), zwj = 2σj
M2

M3
. (6.44)

Assuming that z = 0 is a regular point and taking into account condition
(6.17), G(η, z) can be expanded in a power series in z:

G(η, z) = G0(η) +
∞∑

n=1

Gn(η)zn . (6.45)
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After simple algebra, using the ansatz (6.16) and Eq. (6.45) in Eqs. (6.2) (with
d = 3) and (6.43) one gets

Z = G0 + 3η
M1M2

M3
G0 + 4η

∞∑
n=1

Gn
Mn

2

Mn+1
3

N∑
i,j=1

xixjσ
n
i σ

n
j σ

3−n
ij , (6.46)

Zw = G0 +
∞∑

n=1

2nGn
Mn

2

Mn
3

Mn . (6.47)

Notice that if the series (6.45) is truncated after a given order n ≥ 3, Zw is
given by the first nmoments of the size distribution only. On the other hand, Z
still involves an infinite number of moments if the truncation is made after n ≥
4 due to the presence of terms like

∑
i,j xixjσ

4
i σj

4/σij ,
∑

i,j xixjσ
5
i σj

5/σ2
ij ,

. . . . Therefore, if we want the consistency condition Z = Zw to be satisfied
for any discrete or continuous polydisperse mixture, either the whole infinite
series (6.45) needs to be considered or it must be truncated after n = 3. The
latter is of course the simplest possibility and thus we make the approximation

G(η, z) = G0(η) + G1(η)z + G2(η)z2 + G3(η)z3 . (6.48)

As a consequence, Z and Zw depend functionally on the size distribution of
the mixture only through the first three moments (which is in the spirit of
Rosenfeld’s Fundamental Measure Theory [62]).

Using the approximation (6.48) in Eqs. (6.46) and (6.47) we are led to

Z = G0 + η

[
M1M2

M3
(3G0 + 2G1) + 2

M3
2

M2
3

(G1 + 2G2 + 2G3)
]
, (6.49)

Zw = G0 + 2
M1M2

M3
G1 + 4

M3
2

M2
3

(G2 + 2G3) . (6.50)

Thus far, the dependence of both Z and Zw on the moments M1, M2, and M3

is explicit and we only lack the packing-fraction dependence of G1, G2, and
G3. From Eqs. (6.49) and (6.50) it follows that the difference between Z and
Zw is given by

Z−Zw =
M1M2

M3
[3ηG0 − 2(1 − η)G1]+2

M3
2

M2
3

[ηG1 − 2(1 − η)G2 − 2(2 − η)G3] .

(6.51)
Therefore, Z = Zw for any dispersity provided that

G1(η) =
3η

2 (1 − η)2
, (6.52)

G2(η) =
3η2

4 (1 − η)3
− 2 − η

1 − η
G3(η) , (6.53)
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where use has been made of the definition of G0, Eq. (6.17). To close the
problem, we use the equal size limit given in Eq. (6.18), which yields G0 +
G1 + G2 + G3 = gs. After a little algebra we are led to

G2(η) = (2 − η)gs −
2 + η2/4
(1 − η)2

, (6.54)

G3(η) = (1 − η)
(
gSPT
s − gs

)
. (6.55)

This completes the derivation of our improved approximation, which we will
call “e3,” following the same criterion as the one used to call “e1” and “e2”
to the approximations (6.20) and (6.34), respectively. In Eq. (6.55), gSPT

s is
the SPT contact value for a single fluid, whose expression appears in Table
6.1. From Eq. (6.55) it is obvious that the choice gs = gSPT

s makes our e3
approximation to become the e2 approximation, both reducing to the SPT
for mixtures, Eq. (6.8). This means that the SPT is fully internally consistent
with the requirement Z = Zw, although it has the shortcoming of not being
too accurate in the single component case. The e3 proposal, on the other hand,
satisfies the condition Z = Zw and has the flexibility of accommodating any
desired gs.

For the sake of concreteness, let us write explicitly the contact values in
the e3 aproximation:

ge3
ij (σij) =

1
1 − η

+
3η

2 (1 − η)2
M2

M3

σiσj

σij
+

[
(2 − η)gs −

2 + η2/4
(1 − η)2

]

×
(
M2

M3

σiσj

σij

)2

+ (1 − η)
(
gSPT
s − gs

)(M2

M3

σiσj

σij

)3

, (6.56)

ge3
wj =

1
1 − η

+
3η

(1 − η)2
M2

M3
σj + 4

[
(2 − η)gs −

2 + η2/4
(1 − η)2

](
M2

M3
σj

)2

+ 8(1 − η)
(
gSPT
s − gs

)(M2

M3
σj

)3

. (6.57)

With the above results the compressibility factor may be finally written in
terms of Zs as

Ze3(η) =
1

(1 − η)
+
(
M1M2

M3
− M3

2

M2
3

)
3η

(1 − η)2
+
M3

2

M2
3

[
Zs(η) −

1
1 − η

]
.

(6.58)

A few comments are in order at this stage. First, from Eq. (6.49) we can
observe that, for the class of approximations (6.48), the compressibility factor
Z does not depend on the individual values of the coefficients G2 and G3,
but only on their sum. As a consequence, two different approximations of
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the form (6.48) sharing the same density dependence of G1 and G2 + G3 also
share the same virial EOS. For instance, if one makes the choice gs = gPY

s ,
then ZePY3 = ZPY, even though gePY3

ij (σij) �= gPY
ij (σij). Furthermore, if one

makes the more accurate choice gs = gCS
s , then ZeCS3 = ZBMCSL, but again

geCS3
ij (σij) �= gBGHLL

ij (σij). The eCS3 contact values are

geCS3
ij (σij) =

1
1 − η

+
3η

2 (1 − η)2
M2

M3

σiσj

σij
+
η2(1 + η)
4(1 − η)3

(
M2

M3

σiσj

σij

)2

+
η2

4(1 − η)2

(
M2

M3

σiσj

σij

)3

, (6.59)

geCS3
wj =

1
1 − η

+
3η

(1 − η)2
M2

M3
σj +

η2(1 + η)
(1 − η)3

(
M2

M3
σj

)2

+
2η2

(1 − η)2

(
M2

M3
σj

)3

. (6.60)

In Figs. 6.3 and 6.4 we display the performance of the contact values as
given by Eqs. (6.59) and (6.60), respectively, by comparison with results of
computer simulations for both discrete and polydisperse mixtures. In both
figures, we have also included the results that follow from the classical pro-
posals as well as those of the eCS1 and eCS2 approximations. It is clear that
for the wall–particle contact values the eCS3 approximation yields the best

–

–

Fig. 6.3. Plot of the difference gij(σij)−gBGHLL
ij (σij) as a function of the parameter

zij = (σiσj/σij)M2/M3 for hard spheres (d = 3) at a packing fraction η = 0.49. The
symbols are simulation data for the single fluid (circle, [47]), three binary mixtures
(squares, [63]) with σ2/σ1 = 0.3 and x1 = 0.0625, 0.125, and 0.25, and a ternary
mixture (triangles, [64]) with σ2/σ1 = 2/3, σ3/σ1 = 1/3, and x1 = 0.1, x2 = 0.2.
The lines are the PY approximation (– · · –), the SPT approximation (– · – ·), the
eCS1 approximation (· · · ), the eCS2 approximation (– – –), and the eCS3 approxi-
mation (—)
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–

Fig. 6.4. Plot of the difference gwj −gBGHLL
wj as a function of the parameter zwj/2 =

σjM2/M3 for hard spheres (d = 3) at a packing fraction η = 0.4. The symbols
are simulation data for a polydisperse mixture with a narrow top-hat distribution
(open squares, [65]), a polydisperse mixture with a wide top-hat distribution (open
circles, [65]), a polydisperse mixture with a Schulz distribution (open triangles, [65]),
and a binary mixture (closed circles, [66]). The lines are the PY approximation
(– · · –), the SPT approximation (– · – ·), the eCS1 approximation (· · · ), the eCS2
approximation (– – –), and the eCS3 approximation (—)

performance, while for the particle–particle contact values both the eCS2 and
the eCS3 are of comparable accuracy. A further feature to be pointed out is
that the practical collapse on a common curve of the simulation data in Figs.
6.3 and 6.4 provides a posteriori support for the universality ansatz made in
Eq. (6.16).

As mentioned earlier, there exist extra consistency conditions (see for in-
stance [15]) that one might use as well within our approach. Assuming that the
ansatz (6.16) still holds, some of these conditions are related to the derivatives
of G with respect to z, namely

∂G(η, z)
∂z

∣∣∣∣
z=0

=
3η

2(1 − η)2
, (6.61)

∂2G(η, z)
∂z2

∣∣∣∣
z=0

=
3η

1 − η

(
gPY
s − 1

2
gs

)
, (6.62)

∂3G(η, z)
∂z3

∣∣∣∣
z=2

= 0 . (6.63)

Interestingly enough, as shown by Eq. (6.52), condition (6.61) is already sat-
isfied by our e3 approximation without having to be imposed. On the other
hand, condition (6.63) implies G3 = 0 in the e3 scheme and thus it is only
satisfied if gs = gSPT

s , in which case we recover the SPT. Condition (6.62) is
not fulfilled either by the SPT or by the e3 approximation (except for a partic-
ular expression of gs which is otherwise not very accurate). Thus, fulfilling the
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extra conditions (6.62) and (6.63) with a free gs requires either considering a
higher order polynomial in z (in which case the consistency condition Z = Zw

cannot be satisfied for arbitrary mixtures, as discussed before) or not using
the universality ansatz at all. In the first case, we have checked that a quartic
or even a quintic polynomial does not improve matters, whereas giving up the
universality assumption increases significantly the number of parameters to
be determined and seems not to be adequate in view of the behavior observed
in the simulation data.

An additional comment has to do with the restriction to d = 3 in this
subsection. As noted before, the approximation e1 reduces to the exact result
(6.3) for d = 1. For d = 2, the approximation e2 already fulfills the condition
Z = Zw and so there is no real need to go further in that case. Since we
have needed the approximation e3 to satisfy Z = Zw for d = 3, it is tempting
to speculate that a polynomial form for G(z) of degree d could be found to
be consistent with the condition Z = Zw for d ≥ 4. However, a detailed
analysis shows that this is not the case for an arbitrary mixture, since the
number of conditions exceeds the number of unknowns, unless the universality
assumption is partially relaxed.

As a final comment, let us stress that, although the discussion in this
section has referred, for the sake of simplicity, to discrete mixtures, all the
dependence on the details of the composition occurs through a finite number
of moments, so that the results remain meaningful even for continuous poly-
disperse mixtures [67]. In that case, instead of a set of mole fractions {xi} and
a set of diameters {σi}, one has to deal with a distribution function w(σ) such
that w(σ)dσ is the fraction of particles with a diameter comprising between
σ and σ + dσ. Therefore, the moments (6.1) are now defined as

Mn =
∫ ∞

0

dσ σnw(σ) , (6.64)

and with such a change the results we have derived for discrete mixtures also
hold for polydisperse systems.

6.2.3 Non-Additive Systems

Non-additive hard-core mixtures, where the distance of closest approach be-
tween particles of different species is no longer the arithmetic mean of the
diameters of both particles, have received much less attention than additive
mixtures, in spite of their in principle more versatility to deal with interesting
aspects occurring in real systems (such as fluid–fluid phase separation) and
of their potential use as reference systems in perturbation calculations on the
thermodynamic and structural properties of, say, Lennard–Jones mixtures.
Nevertheless, the study of non-additive systems goes back 50 years [68, 69,
70, 71, 72] and is still a rapidly developing and challenging problem. Ap-
proaches to deal with this problem based on density functional theories will
be presented in Chap. 7.
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As mentioned in the paper by Ballone et al. [73], where the relevant
references may be found, experimental work on alloys, aqueous electrolyte
solutions, and molten salts suggests that hetero-coordination and homo-
coordination may be interpreted in terms of excluded volume effects due to
non-additivity of the repulsive part of the intermolecular potential. In particu-
lar, positive non-additivity leads naturally to demixing in HS mixtures, so that
some of the experimental findings of phase separation in the above-mentioned
(real) systems may be accounted for by using a model of a binary mixture of
(positive) non-additive HS. On the other hand, negative non-additivity seems
to account well for chemical short-range order in amorphous and liquid binary
mixtures with preferred hetero-coordination [74, 75].

Some Preliminary Definitions

Let us consider an N -component mixture of non-additive HS in d dimensions.
In this case, σij = 1

2 (σi +σj)(1+Δij), where Δij ≥ −1 is a symmetric matrix
with zero diagonal elements (Δii = 0) that characterizes the degree of non-
additivity of the interactions. If Δij > 0, the non-additivity character of the ij
interaction is said to be positive, while it is negative if Δij < 0. In the case of a
binary mixture (N = 2), the only non-additivity parameter is Δ ≡ Δ12 = Δ21.
The virial EOS (6.2) remains being valid in the non-additive case.

The contact values gij(σij) can be expanded in a power series in density as

gij(σij) = 1 + vdρ

N∑
k=1

xkck;ij + (vdρ)2
N∑

k,�=1

xkx�ck�;ij + O(ρ3) . (6.65)

The coefficients ck;ij , ck�;ij , . . . are independent of the composition of the mix-
ture, but they are in general complicated nonlinear functions of the diameters
σij , σik, σjk, σk�, . . . . Insertion of the expansion (6.65) into Eq. (6.2) yields
the virial expansion of Z, namely

Z(ρ) = 1 +
∞∑

n=2

Bn(vdρ)n−1

= 1 + vdρ

N∑
i,j=1

Bijxixj + (vdρ)2
N∑

i,j,k=1

Bijkxixjxk

+ (vdρ)3
N∑

i,j,k,�=1

Bijk�xixjxkx� + O(ρ4) . (6.66)

Note that, for further convenience, we have introduced the coefficients Bn ≡
v
−(n−1)
d Bn, where Bn are the usual virial coefficients [cf. Eq. (6.25)]. The

composition-independent second, third, and fourth (barred) virial coefficients
are given by

Bij = 2d−1σd
ij , (6.67)
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Bijk =
2d−1

3
(
ck;ijσ

d
ij + cj;ikσ

d
ik + ci;jkσ

d
jk

)
, (6.68)

Bijk� =
2d−1

6
(
ck�;ijσ

d
ij + cj�;ikσ

d
ik + ci�;jkσ

d
jk + cjk,i�σ

d
i� + cik,j�σ

d
j�

+cij;k�σ
d
k�

)
. (6.69)

A Simple Proposal for the Equation of State of d-Dimensional
Non-Additive Mixtures

Our goal now is to generalize the e1 proposal given by Eq. (6.20) to the non-
additive case [76]. We will not try to extend the e2 and e3 proposals, Eqs.
(6.34) and (6.56), because of two reasons. First, given the inherent complexity
of non-additive systems, we want to keep the approach as simple as possible.
Second, we are more interested in the EOS than in the contact values them-
selves and, as mentioned earlier, the e1 proposal provides excellent EOS, at
least in the additive case, despite the simplicity of the corresponding contact
values.

As the simplest possible extension, we impose again the point particle and
equal size consistency conditions, Eqs. (6.12) and (6.13), and thus keep in this
case also the ansatz (6.16) and the linear structure of Eq. (6.19). However,
instead of using Eq. (6.15), we determine the parameters zij as to reproduce
Eq. (6.65) to first order in the density. The result is readily found to be [76]

zij =
(
b3
b2

− 1
)−1(∑

k xkck;ij

Md
− 1
)
. (6.70)

Here b2 = 2d−1 and b3 are the second and third virial coefficients for the
single component fluid, as defined by Eq. (6.26). The proposal of Eq. (6.19)
supplemented by Eq. (6.70) is, by construction, accurate for densities low
enough as to justify the truncated approximation gij(σij) ≈ 1+vdρ

∑
k xkck;ij .

On the other hand, the limitations of this truncated expansion for moderate
and large densities may be compensated by the use of gs. When Eqs. (6.16),
(6.19), and (6.70) are inserted into Eq. (6.2) one gets

Z(η) = 1 +
η

1 − η

b3MdB2 − b2B3

(b3 − b2)M2
d

+ [Zs(η) − 1]
B3 −MdB2

(b3 − b2)M2
d

. (6.71)

Equation (6.71) is the sought generalization of Eq. (6.21) to non-additive
hard-core systems. As in the additive case, the density dependence in the EOS
of the mixture is rather simple: Z(η)− 1 is expressed as a linear combination
of η/(1 − η) and Zs(η) − 1, with coefficients such that the second and third
virial coefficients are reproduced. Again, Eq. (6.71) is bound to be accurate
for sufficiently low densities, while the limitations of the truncated expansion
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for moderate and large densities are compensated by the use of the EOS of
the pure fluid.

The exact second virial coefficient B2 is known from Eq. (6.67). In princi-
ple, one should use the exact coefficients ck;ij to compute B3. However, to the
best of our knowledge they are only known for d ≤ 3. Since our objective is to
have a proposal which is explicit for any d, we can make use of a reasonable
approximation for them [76], as described below.

An Approximate Proposal for ck;ij

The values of the coefficients ck;ij are exactly known for d = 1 and d = 3 and
from these results one may approximate them in d dimensions as [76]

ck;ij = σd
k;ij +

(
b3
b2

− 1
)
σd−1

k;ij

σij
σi;jkσj;ik , (6.72)

where we have called
σk;ij ≡ σik + σjk − σij (6.73)

and it is understood that σk;ij ≥ 0 for all sets ijk. Clearly, σi;ij = σi. For a
binary mixture Eq. (6.72) yields

c1;11 = (b3/b2)σd
1 ,

c2;11 = (2σ12 − σ1)d + (b3/b2 − 1)σ1(2σ12 − σ1)d−1 ,
c1;12 = σd

1 + (b3/b2 − 1) (2σ12 − σ1)σd
1/σ12 .

(6.74)

Of course, Eqs. (6.72) and (6.74) reduce to the exact results for d = 1 (b2 =
b3 = 1) and for d = 3 (b2 = 4, b3 = 10).

The quantities σk;ij may be given a simple geometrical interpretation. As-
sume that we have three spheres of species i, j, and k aligned in the sequence
ikj. In such a case, the distance of closest approach between the centers of
spheres i and j is σik + σjk. If the sphere of species k were not there, that
distance would of course be σij . Therefore, σk;ij as given by Eq. (6.73) repre-
sents a kind of effective diameter of sphere k, as seen from the point of view
of the interaction between spheres i and j.

Inserting Eq. (6.72) into Eq. (6.70), one gets

zij =
(
b3
b2

− 1
)−1

(∑
k xkσ

d
k;ij

Md
− 1

)
+

∑
k xkσ

d−1
k;ij σi;jkσj;ik

Mdσij
. (6.75)

It can be easily checked that in the additive case (σk;ij → σk), Eq. (6.75)
reduces to Eq. (6.15).

Equations (6.72) and (6.74) are restricted to the situation σk;ij ≥ 0 for any
choice of i, j, and k, i.e., 2σ12 ≥ max(σ1, σ2) in the binary case. This excludes
the possibility of dealing with mixtures with extremely high negative non-
additivity in which one sphere of species k might “fit in” between two spheres
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of species i and j in contact. Since for d = 3 and N = 2 the coefficients ck;ij

are also known for such mixtures [77], we may extend our proposal to deal
with these cases:

c1;11 = (b3/b2)σd
1 ,

c2;11 = σ̂d
2 + (b3/b2 − 1)σ1σ̂

d−1
2 ,

c1;12 = (2σ12 − σ̂2)d + (b3/b2 − 1) σ̂2σ
d
1/σ12 ,

(6.76)

where we have defined

σ̂2 = max (2σ12 − σ1, 0) . (6.77)

With such an extension, we recover the exact values of ck;ij for a binary
mixture of hard spheres (d = 3), even if σ1 > 2σ12 or σ2 > 2σ12.

The EOS (6.71) becomes explicit when B3 is obtained from Eq. (6.68) by
using the approximation (6.72). The resulting virial coefficient is the exact one
for d = 1 and d = 3. For hard disks (d = 2), it turns out that the approximate
third virial coefficient is practically indistinguishable from the exact one [76].
When the approximate B3 is used, Eq. (6.71) reduces to Eq. (6.21) in the
additive case.

From the comparison with simulation results, both for the compressibil-
ity factor and higher order virial coefficients, we find that the EOS (6.71)
does a good job for non-additive mixtures, thus representing a reasonable
compromise between simplicity and accuracy, provided that Zs is accurate
enough. This is illustrated in Fig. 6.5, where the proposal (6.71) with Zs = ZCS

s

and a similar proposal by Hamad [78, 79, 80] are compared with simulation

– – –

Fig. 6.5. Plot of the compressibility factor versus the non-additivity parameter Δ
for a symmetric binary mixture of non-additive hard spheres (d = 3) at η = π/30
and two different compositions. The solid lines are our proposal, Eq. (6.71), with
Zs = ZCS

s , while the dashed lines are Hamad’s proposal [78, 79, 80]. The symbols are
results from Monte Carlo simulations [81, 82]
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data [81, 82] for some three-dimensional symmetric mixtures. A more exten-
sive comparison [76] shows that Eq. (6.71) seems to work better (especially
as the density is increased) in the case of positive non-additivities, at least for
d = 1, d = 2, and d = 3, but its performance is also reasonably good in highly
asymmetric mixtures, even for negative Δ. Of course, the full assessment of
this proposal is still pending since it involves many facets (non-additivity pa-
rameters, size ratios, density, and composition). Without this full assessment
and given its rather satisfactory performance so far, going beyond the ap-
proximation given by Eq. (6.19) (taking similar steps to the ones described in
Sects. 6.2.1 and 6.2.2 for additive systems) does not seem to be necessary at
this stage, although it is in principle feasible.

6.2.4 Demixing

Demixing is a common phase transition in fluid mixtures usually originated
on the asymmetry of the interactions (e.g., their strength and/or range) be-
tween the different components in the mixture. In the case of athermal systems
such as HS mixtures in d dimensions, if fluid–fluid separation occurs, it would
represent a neat example of an entropy-driven phase transition, i.e., a phase
separation based only on the size asymmetry of the components. The exis-
tence of demixing in binary additive three-dimensional HS mixtures has been
studied theoretically since decades, and the issue is still controversial. In this
subsection, we will present our results following different but related routes
that attempt to clarify some aspects of this problem.

Binary Mixtures of Additive d-Dimensional Spheres
(d = 3, d = 4, and d = 5)

Now we look at the possible instability of a binary fluid mixture of HS of
diameters σ1 and σ2 (σ1 > σ2) in d dimensions by looking at the Helmholtz
free energy per unit volume, f , which is given by

f

ρkBT
= −1 +

2∑
i=1

xi ln
(
xiρλ

d
i

)
+
∫ η

0

dη′
Z(η′) − 1

η′
, (6.78)

where λi is the thermal de Broglie wavelength of species i. We locate the
spinodals through the condition f11f22−f2

12 = 0, with fij ≡ ∂2f/∂ρi∂ρj . Due
to the spinodal instability, the mixture separates into two phases of different
composition. The coexistence conditions are determined through the equality
of the pressure p and the two chemical potentials μ1 and μ2 in both phases
(μi = ∂f/∂ρi), leading to binodal (or coexistence) curves.

We begin with the case d = 3. It is well known that the BMCSL EOS,
Eq. (6.11), does not lead to demixing. However, other EOS for HS mixtures
have been shown to predict demixing [53, 54, 83], including the EOS that is
obtained by truncating the virial series after a certain number of terms [84, 85].
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In particular, it turns out that both Z = ZeCS1, Eq. (6.40), and Z = ZeCS2,
Eq. (6.41), lead to demixing for certain values of the parameter γ ≡ σ2/σ1

that measures the size asymmetry. The critical values of the pressure, the
composition, and the packing fraction are presented in Table 6.2 for a few
values of γ.

As discussed earlier, the eCS1 EOS and, to a lesser extent, the eCS2 EOS
are both in reasonably good agreement with the available simulation results
for the compressibility factor [21, 22, 47, 59] and lead to the exact second and
third virial coefficients but differ in the predictions for Bn with n ≥ 4. The
scatter in the values for the critical constants shown in Table 6.2 is evident
and so there is no indication as to whether one should prefer one equation
over the other in connection with this problem. Notice, for instance, that the
eCS2 does not predict demixing for γ ≥ 0.2, while both the values of the
critical pressures and packing fractions for which it occurs according to the
eCS1 EOS suggest that the transition might be metastable with respect to a
fluid–solid transition.

Now we turn to the cases d = 4 and d = 5. Here, we use the extended
Luban–Michels equation (eLM1) described in Sect. 6.2.1 [see Eq. (6.21) and
Table 6.1]. As seen in Fig. 6.6, the location of the critical point tends to go
down and to the right in the η2 versus η1 plane as γ decreases for d = 4 [86].
On the other hand, while it also tends to go down as γ decreases if d = 5, its
behavior in the η2 versus η1 plane is rather more erratic in this case.

Also, the value of the critical pressure pc (in units of kBT/σ
d
1) is not a

monotonic function of γ; its minimum value lies between γ = 1/3 and γ = 1/2
when d = 4, and it is around γ = 3/5 for d = 5. This non-monotonic behavior
is also observed for three-dimensional HS [83, 85].

It is conceivable that the demixing transition in binary mixtures of hard
hyperspheres in four and five dimensions described above may be metastable
with respect to a fluid–solid transition, as it may also be the case of 3D
HS. In fact, the value of the pressure at the freezing transition for the single
component fluid is [45] pfσd/kBT � 12.7 (d = 3), 11.5 (d = 4), and 12.2
(d = 5), i.e., pfσ

d/kBT does not change appreciably with the dimensionality

Table 6.2. Critical constants pcσ
3
1/kBT , x1c, and ηc for different γ-values as ob-

tained from the two extended CS Eqs. (6.40) and (6.41)

eCS1 eCS2

γ pcσ
3
1/kBT x1c ηc pcσ

3
1/kBT x1c ηc

0.05 3599 0.0093 0.822 1096 0.0004 0.204
0.1 1307 0.0203 0.757 832.0 0.0008 0.290
0.2 653.4 0.0537 0.725 — — —
0.3 581.9 0.0998 0.738 — — —
0.4 663.4 0.1532 0.766 — — —
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Fig. 6.6. Spinodal curves (upper panels: lines) and binodal curves (upper panels:
open symbols; lower panels: lines) in a 4D system (left panels) and in a 5D system
(right panels). The closed symbols are the critical consolute points

but is clearly very small in comparison with the critical pressures pcσ
d
1/kBT

we obtain for the mixture; for instance, pcσ
d
1/kBT � 600 (d = 3, γ = 3/10),

300 (d = 4, γ = 1/3), and 123 (d = 5, γ = 3/5). However, one should also
bear in mind that if the concentration x1 of the bigger spheres decreases,
the value of the pressure at which the solid–fluid transition in the mixture
occurs in three dimension is also considerably increased with respect to pf
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[cf. Fig. 6.6 of [83]]. Thus, for concentrations x1 � 0.01 corresponding to the
critical point of the fluid–fluid transition, the maximum pressure of the fluid
phase greatly exceeds pf. If a similar trend with composition also holds in four
and five dimensions, and given that the critical pressures become smaller as the
dimensionality d is increased, it is not clear whether the competition between
the fluid–solid and the fluid–fluid transitions in these dimensionalities will
always be won by the former. The point clearly deserves further investigation.

An interesting feature must be mentioned. There is a remarkable similarity
between the binodal curves represented in the pσd

i –η1 and in the μi–η1 planes
[86]. By eliminating η1 as if it were a parameter, one can represent the binodal
curves in a μi versus pσd

i plane. Provided the origin of the chemical potentials
is such as to make λi = σi, the binodals in the μi–pσd

i plane practically
collapse into a single curve (which is in fact almost a straight line) for each
dimensionality (d = 3, d = 4, and d = 5) [86]. A closer analysis of this
phenomenon shows, however, that it is mainly due to the influence on μi

of terms which are quantitatively dominant but otherwise irrelevant to the
coexistence conditions.

Binary Mixtures of Non-Additive Hard Hyperspheres
in the Limit of High Dimensionality

Let us now consider a binary mixture of non-additive HS of diameters σ1 and
σ2 in d dimensions. Thus, in this case σ12 ≡ 1/2(σ1 + σ2)(1 + Δ) where as
before Δ may be either positive or negative. Furthermore, assume (something
that will become exact in the limit d→ ∞ [87]) that the EOS of the mixture
is described by the second virial coefficient only, namely

p = ρkBT [1 +B2(x1)ρ] , (6.79)

where, according to Eq. (6.67),

B2(x1) = vd2d−1
(
x2

1σ
d
1 + x2

2σ
d
2 + 2x1x2σ

d
12

)
. (6.80)

The Helmholtz free energy per unit volume is given by f/ρkBT = −1 +∑2
i=1 xi ln

(
xiρλ

d
i

)
+ B2ρ, where Eq. (6.78) has been used. The Gibbs free

energy per particle is

g = (f + p)/ρ =
2∑

i=1

xi ln
(
xiρλ

d
i

)
+ 2B2(x1)ρ , (6.81)

where without loss of generality we have set kBT = 1. Given a size ratio γ, a
value of Δ, and a dimensionality d, the consolute critical point (x1c, pc) is the
solution to

(
∂2g/∂x2

1

)
p

=
(
∂3g/∂x3

1

)
p

= 0, provided of course it exists. Then,
one can get the critical density ρc from Eq. (6.79).
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We now introduce the scaled quantities [88]

p̃ ≡ 2d−1vdd
−2pσd

1/kBT, u ≡ d−1B2ρ . (6.82)

Consequently, Eqs. (6.79) and (6.81) can be rewritten as

p̃ = u
(
u+ d−1

)
/B̃2 , (6.83)

g =
2∑

i=1

xi ln (xiΛi) + ln
(
Adu/B̃2

)
+ 2du , (6.84)

where B̃2 ≡ B2/2d−1vdσ
d
1 , Λi ≡ (λi/σ1)d, and Ad ≡ d/2d−1vd. Next we take

the limit d → ∞ and assume that the volume ratio γ̃ ≡ γd is kept fixed and
that there is a (slight) non-additivity Δ = d−2Δ̃ such that the scaled non-
additivity parameter Δ̃ is also kept fixed in this limit. Thus, the second virial
coefficient can be approximated by

B̃2 = B̃
(0)
2 + B̃

(1)
2 d−1 + O(d−2), B̃(0)

2 =
(
x1 + x2γ̃

1/2
)2

, B̃
(1)
2 = x1x2γ̃

1/2J ,

(6.85)
with

J ≡ 1
4

(ln γ̃)2 + 2Δ̃. (6.86)

Let us remark that, in order to find a consolute critical point, it is essential
to keep the term of order d−1 if Δ̃ ≤ 0. The EOS (6.83) can then be inverted
to yield

u = u(0)+u(1)d−1+O(d−2), u(0) =
√
p̃B̃

(0)
2 , u(1) = −1

2

(
1 − u(0) B̃

(1)
2

B̃
(0)
2

)
.

(6.87)
In turn, the Gibbs free energy (6.84) becomes

g = g(0)d+ g(1) + O(d−1) ,

g(0) = 2u(0), g(1) =
2∑

i=1

xi ln (xiΛi) + ln
(
Adu

(0)/B̃
(0)
2

)
+ 2u(1) ,(6.88)

while the chemical potentials μ1 = g+x2 (∂g/∂x1)p and μ2 = g−x1 (∂g/∂x1)p

are given by

μi = μ
(0)
i d+ μ

(1)
i + O(d−1), μ

(0)
1 = 2p̃1/2 ,

μ
(1)
1 = ln

(
Adx1Λ1

√
p̃/B̃

(0)
2

)
− 1/

√
B̃

(0)
2 + (x2/x1)(γ̃p̃)1/2B̃

(1)
2 /B̃

(0)
2 ,(6.89)

where μ2 is obtained from μ1 by the changes x1 ↔ x2, Λ1 → Λ2/γ̃, γ̃ → 1/γ̃,
p̃→ p̃γ̃, B̃2 → B̃2/γ̃.
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The coordinates of the critical point are readily found to be

x1c =
γ̃3/4

1 + γ̃3/4
, p̃c =

(
1 + γ̃1/4

)4
4γ̃J2

. (6.90)

Note that x1c is independent of Δ̃. The coexistence curve, which has to be
obtained numerically, follows from the conditions μ(1)

i (xA, p̃) = μ
(1)
i (xB , p̃)

(i = 1, 2) where x1 = xA and x1 = xB are the mole fractions of the co-
existing phases. Once the critical consolute point has been identified in the
pressure/concentration plane, we can obtain the critical density. The domi-
nant behaviors of B̃2 and u at the critical point are

B̃
(0)
2 (x1c) =

γ̃(
1 − γ̃1/4 + γ̃1/2

)2 , u(0)
c =

(
1 + γ̃1/4

)2
2
(
1 − γ̃1/4 + γ̃1/2

)
J
. (6.91)

Hence, the critical density readily follows after substitution in the scaling
relation given in Eq. (6.82). It is also convenient to consider the scaled version
η̃ ≡ d−12dη of the packing fraction η = vdρσ

d
1 (x1 + x2γ̃). At the critical point,

it takes the nice expression

η̃c =

(
γ̃1/8 + γ̃−1/8

)2
J

. (6.92)

The previous results clearly indicate that a demixing transition is possible
not only for additive or positively non-additive mixtures but even for nega-
tive non-additivities. The only requirement is J > 0, i.e., Δ̃ > −1/8 (ln γ̃)2

or, equivalently, Δ > −1/8 (ln γ)2. Figure 6.7 shows the binodal curves cor-
responding to γ̃ = 0.01 and Δ̃ = −0.1 (negative non-additivity), Δ̃ = 0
(additivity), and Δ̃ = 0.1 (positive non-additivity).

Fig. 6.7. Binodal curves in the planes p̃ versus x1 and η̃ versus x1 corresponding
to γ̃ = 0.01 and Δ̃ = −0.1, Δ̃ = 0, and Δ̃ = 0.1
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While the high-dimensionality limit has allowed us to address the prob-
lem in a mathematically simple and clear-cut way, the possibility of demixing
with negative non-additivity is not an artifact of that limit. As said before,
demixing is known to occur for positive non-additive binary mixtures of HS
in three dimensions, and there is compelling evidence on the existence of
this phenomenon in the additive case, at least in the metastable fluid re-
gion. Even though in a three-dimensional mixture the EOS is certainly more
complicated than Eq. (6.79) and the demixing transition that we have just
discussed for negative non-additivity is possibly metastable with respect to
the freezing transition, the main effects at work (namely the competition
between depletion due to size asymmetry and hetero-coordination due to neg-
ative non-additivity) are also present. In fact, it is interesting to point out
that Roth et al. [89], using the approximation of an effective single compo-
nent fluid with pair interactions to describe a binary mixture of non-additive
three-dimensional HS and employing an empirical rule based on the effec-
tive second virial coefficient, have also suggested that demixing is possible for
small negative non-additivity and high size asymmetry. Our exact results lend
support to this suggestion and confirm that, in some cases, the limit d → ∞
highlights features already present in real systems.

6.3 The Rational Function Approximation (RFA)
Method for the Structure of Hard-Sphere Fluids

The RDF g(r) and its close relative the (static) structure factor S(q) are the
basic quantities used to discuss the structure of a single component fluid [1,
2, 3, 4]. The latter quantity is defined as

S(q) = 1 + ρh̃(q) , (6.93)

where
h̃(q) =

∫
dr eiq·rh(r) (6.94)

is the Fourier transform of the total correlation function h(r) ≡ g(r)−1, i be-
ing the imaginary unit. An important related quantity is the direct correlation
function c(r), which is defined in Fourier space through the Ornstein–Zernike
(OZ) relation [1, 2, 3, 4]

c̃(q) =
h̃(q)

1 + ρh̃(q)
, (6.95)

where c̃(q) is the Fourier transform of c(r).
As pointed out in Chap. 1, the usual approach to obtain g(r) is through one

of the integral equation theories, where the OZ equation is complemented by
a closure relation between c(r) and h(r) [1]. However, apart from requiring in
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general hard numerical labor, a disappointing aspect is that the substitution of
the (necessarily) approximate values of g(r) obtained from them in the (exact)
statistical mechanical formulae may lead to the thermodynamic inconsistency
problem.

The two basic routes to obtain the EOS of a single component fluid of HS
are the virial route, Eq. (6.14), and the compressibility route

χs ≡ kBT

(
∂ρ

∂p

)
T

= [1 − ρc̃(0)]−1 = S(0)

= 1 + 2ddησ−d

∫ ∞

0

dr rd−1h(r) . (6.96)

where χs is the (reduced) isothermal compressibility. Thermodynamic consis-
tency implies that

χ−1
s (η) =

d
dη

[ηZs(η)] , (6.97)

but, in general, this condition is not satisfied by an approximate RDF. In
the case of an HS mixture, the virial route is given by Eq. (6.2), while the
compressibility route is indicated below [cf. Eq. (6.145)].

In this section we describe the RFA method, which is an alternative to
the integral equation approach and in particular leads by construction to
thermodynamic consistency.

6.3.1 The Single Component HS Fluid

We begin with the case of a single component fluid of HS of diameter σ. The
following presentation is equivalent to the one given in [90, 91], where all de-
tails can be found, but more suitable than the former for direct generalization
to the case of mixtures.

The starting point will be the Laplace transform

G(s) =
∫ ∞

0

dr e−srrg(r) (6.98)

and the auxiliary function Ψ(s) defined through

G(s) =
s

2π
[ρ+ esσΨ(s)]−1

. (6.99)

The choice of G(s) as the Laplace transform of rg(r) and the definition of
Ψ(s) from Eq. (6.99) are suggested by the exact form of g(r) to first order in
density [90].

Since g(r) = 0 for r < σ while g(σ+) = finite, one has

g(r) = Θ(r − σ)
[
g(σ+) + g′(σ+)(r − σ) + · · ·

]
, (6.100)
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where g′(r) ≡ dg(r)/dr. This property imposes a constraint on the large s
behavior of G(s), namely

eσssG(s) = σg(σ+) +
[
g(σ+) + σg′(σ+)

]
s−1 + O(s−2). (6.101)

Therefore, lims→∞ esσsG(s) = σg(σ+) = finite or, equivalently,

lim
s→∞

s−2Ψ(s) =
1

2πσg(σ+)
= finite. (6.102)

On the other hand, according to Eq. (6.96) with d = 3,

χs = 1 − 24ησ−3 lim
s→0

d
ds

∫ ∞

0

dr e−srr [g(r) − 1]

= 1 − 24ησ−3 lim
s→0

d
ds
[
G(s) − s−2

]
. (6.103)

Since the (reduced) isothermal compressibility χs is also finite, one has∫∞
0

dr r2 [g(r) − 1] = finite, so that the weaker condition
∫∞
0

dr r [g(r) − 1] =
lims→0[G(s) − s−2] = finite must hold. This in turn implies

Ψ(s) = −ρ+ρσs− 1
2
ρσ2s2 +

(
1
6
ρσ3 +

1
2π

)
s3 −

(
1
24
ρσ3 +

1
2π

)
σs4 +O(s5).

(6.104)

First-Order Approximation (PY Solution)

An interesting aspect to be remarked is that the minimal input we have just
described on the physical requirements related to the structure and thermo-
dynamics of the system is enough to determine the small and large s limits
of Ψ(s), Eqs. (6.102) and (6.104), respectively. While infinite choices for Ψ(s)
would comply with such limits, a particularly simple form is a rational func-
tion. In particular, the rational function having the least number of coefficients
to be determined is

Ψ(s) =
E(0) + E(1)s+ E(2)s2 + E(3)s3

L(0) + L(1)s
, (6.105)

where one of the coefficients can be given an arbitrary non-zero value. We
choose E(3) = 1. With such a choice and in view of Eq. (6.104), one finds
E(0) = −ρL(0), E(1) = −ρ(L(1) − σL(0)), E(2) = ρ(σL(1) − 1

2σ
2L(0)), and

L(0) = 2π
1 + 2η

(1 − η)2
, (6.106)

L(1) = 2πσ
1 + η/2
(1 − η)2

. (6.107)
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Upon substitution of these results into Eqs. (6.99) and (6.105), we get

G(s) =
e−σs

2πs2
L(0) + L(1)s

1 − ρ
[
ϕ2(σs)σ3L(0) + ϕ1(σs)σ2L(1)

] , (6.108)

where

ϕn(x) ≡ x−(n+1)

(
n∑

m=0

(−x)m

m!
− e−x

)
. (6.109)

In particular,

ϕ0(x) =
1 − e−x

x
, ϕ1(x) =

1 − x− e−x

x2
, ϕ2(x) =

1 − x+ x2/2 − e−x

x3
.

(6.110)
Note that limx→0 ϕn(x) = (−1)n/(n+ 1)!

It is remarkable that Eq. (6.108), which has been derived here as the
simplest rational form for Ψ(s) complying with the requirements (6.102) and
(6.104), coincides with the solution to the PY closure, c(r) = 0 for r > σ,
of the OZ equation [42, 43]. Application of Eq. (6.102) yields the PY contact
value gPY

s and compressibility factor ZPY
s shown in Table 6.1. Analogously,

Eq. (6.103) yields

χPY
s =

(1 − η)4

(1 + 2η)2
. (6.111)

It can be easily checked that the thermodynamic relation (6.97) is not satisfied
by the PY theory.

Second-Order Approximation

In the spirit of the RFA, the simplest extension of the rational approximation
(6.105) involves two new terms, namely αs4 in the numerator and L(2)s2 in
the denominator, both of them necessary in order to satisfy Eq. (6.102). Such
an addition leads to

Ψ(s) =
E(0) + E(1)s+ E(2)s2 + E(3)s3 + αs4

L(0) + L(1)s+ L(2)s2
. (6.112)

Applying Eq. (6.104), it is possible to express E(0), E(1), E(2), E(3), L(0), and
L(1) in terms of α and L(2). This leads to

G(s) =
e−σs

2πs2
L(0) + L(1)s+ L(2)s2

1 + αs− ρ
[
ϕ2(σs)σ3L(0) + ϕ1(σs)σ2L(1) + ϕ0(σs)σL(2)

] ,
(6.113)

where

L(0) = 2π
1 + 2η

(1 − η)2
+

12η
1 − η

(
π

1 − η

α

σ
− L(2)

σ2

)
, (6.114)
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L(1) = 2πσ
1 + 1

2η

(1 − η)2
+

2
1 − η

(
π

1 + 2η
1 − η

α− 3η
L(2)

σ

)
. (6.115)

Thus far, irrespective of the values of the coefficients L(2) and α, the condi-
tions lims→∞ esσsG(s) = finite and lims→0[G(s) − s−2] = finite are satisfied.
Of course, if L(2) = α = 0, one recovers the PY approximation. More gen-
erally, we may determine these coefficients by prescribing the compressibility
factor Zs (or equivalently the contact value gs) and then, in order to ensure
thermodynamic consistency, compute from it the isothermal compressibility
χs by means of Eq. (6.97). From Eqs. (6.102) and (6.103) one gets

L(2) = 2πασgs , (6.116)

χs =
(

2π
L(0)

)2 [
1 − 12η

1 − η

α

σ

(
1 + 2

α

σ

)
+

12η
π

αL(2)

σ3

]
. (6.117)

Clearly, upon substitution of Eqs. (6.114) and (6.116) into Eq. (6.117) a
quadratic algebraic equation for α is obtained. The physical root is

α = − 12η(1 + 2η)E4

(1 − η)2 + 36η [1 + η − Zs(1 − η)]E4
, (6.118)

where

E4 =
1 − η

36η
(
Zs − 1

3

)
{

1 −
[
1 +

Zs − 1
3

Zs − ZPY
s

(
χs

χPY
s

− 1
)]1/2

}
. (6.119)

The other root must be discarded because it corresponds to a negative value of
α, which, according to Eq. (6.116), yields a negative value of L(2). This would
imply the existence of a positive real value of s at which G(s) = 0 [90, 91],
which is not compatible with a positive definite RDF. However, according to
the form of Eq. (6.119) it may well happen that, once Zs has been chosen,
there exists a certain packing fraction ηg above which α is no longer positive.
For such a packing fraction, the associated χs becomes equal to χPY

s . This
condition may be interpreted as an indication that, at the packing fraction ηg
where α vanishes, the system ceases to be a fluid and a glass transition in the
HS fluid occurs [91, 92, 93].

Expanding (6.113) in powers of s and using Eq. (6.101), one can obtain
the derivatives of the RDF at r = σ+ [94]. In particular, the first derivative is

g′(σ+) =
1

2πασ

[
L(1) − L(2)

(
1
α

+
1
σ

)]
, (6.120)

which may have some use in connection with perturbation theory [18].
It is worthwhile to point out that the structure implied by Eq. (6.113)

coincides in this single component case with the solution of the Generalized
Mean Spherical Approximation (GMSA) [95, 96, 97], where the OZ relation
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is solved under the ansatz that the direct correlation function has a Yukawa
form outside the core.

For a given Zs, once G(s) has been determined, inverse Laplace transfor-
mation yields rg(r). First, note that Eq. (6.99) can be formally rewritten as

G(s) = − s

2π

∞∑
n=1

ρn−1 [−Ψ(s)]−n e−nsσ. (6.121)

Thus, the RDF is then given by

g (r) =
1

2πr

∞∑
n=1

ρn−1ψn (r − nσ)Θ (r − nσ) , (6.122)

with Θ (x) denoting the Heaviside step function and

ψn (r) = −L−1
{
s [−Ψ (s)]−n

}
, (6.123)

L−1 denoting the inverse Laplace transform. Explicitly, using the residue the-
orem,

ψn (r) = −
4∑

i=1

esir
n∑

m=1

a
(i)
mn

(n−m)!(m− 1)!
rn−m , (6.124)

where

a(i)
mn = lim

s→si

(
d
ds

)m−1

s [−Ψ (s) /(s− si)]
−n

, (6.125)

si (i = 1, . . . , 4) being the poles of 1/Ψ(s), i.e., the roots of E(0) + E(1)s +
E(2)s2 + E(3)s3 + αs4 = 0. Explicit expressions of g(r) up to the second
coordination shell σ ≤ r ≤ 3σ can be found in [98].

On the other hand, the static structure factor S(q) [cf. Eq. (6.93)] and the
Fourier transform h̃(q) may be related to G(s) by noting that

h̃(q) =
4π
q

∫ ∞

0

dr r sin(qr)h(r) = −2π
G(s) −G(−s)

s

∣∣∣∣
s=iq

. (6.126)

Therefore, the basic structural quantities of the single component HS fluid,
namely the RDF and the static structure factor, may be analytically deter-
mined within the RFA method once the compressibility factor Zs, or equiv-
alently the contact value gs, is specified. In Fig. 6.8, we compare simulation
data of g(r) for a density ρσ3 = 0.9 [99] with the RFA prediction and a recent
approach by Trokhymchuk et al. [100], where Zs = ZCS

s [cf. Table 6.1] and
the associated compressibility

χCS
s =

(1 − η)4

1 + 4η + 4η2 − 4η3 + η4
(6.127)
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Fig. 6.8. Radial distribution function of a single component HS fluid for ρσ3 = 0.9.
The solid lines represent simulation data [99]. The dashed lines represent the results
of the approach of [100], while the dotted lines refer to those of the RFA method.
The inset shows the oscillations of g(r) in more detail

are taken in both cases. Both theories are rather accurate, but the RFA cap-
tures better the maxima and minima of g(r) [101].

It is also possible to obtain within the RFA method the direct correlation
function c(r). Using Eqs. (6.95) and (6.126), and applying the residue theorem,
one gets, after some algebra,

c(r) =
(
K+

eκr

r
+K−

e−κr

r
+
K−1

r
+K0 +K1r +K3r

3

)
Θ(1− r) +K

e−κr

r
,

(6.128)
where

κ =
1
α

√
12αηL(2)/π + 1 − 12α(1 + 2α)η/(1 − η) , (6.129)

K± =
e∓κ

4α2(1 − η)4κ6

{
2 [1 + 2(1 + 3α)η] ± [2 + η + 2α(1 + 2η)]κ

+ (1 − η)
[
κ2 − η (12 + (κ± 6)κ)

]
L(2)/π

}{
12η [1 + 2(1 + 3α)η]

± 6η [3η − 2α(1 − 4η)]κ− 6η(1 + 2α)(1 − η)κ2 − (1 − η)2κ3(ακ∓ 1)

+ 6η(1 − η)
[
κ2 − η (12 + (κ± 6)κ)

]
L(2)/π

}
, (6.130)

K−1 = −
(
L(2)

2πα
+K+eκ +K−e−κ +K0 +K1 +K3

)
, (6.131)

K0 = −
[

1 + 2 (1 + 3α) η − 6η (1 − η)L(2)/π

ακ (1 − η)2

]2

, (6.132)
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K1 =
6η
κ2
K0 +

3η
2α2κ2 (1 − η)4

{
[2 + η + 2α(1 + 2η)]2 − 4 (1 − η) [1 + η

×(7 + η + 6α (2 + η))]L(2)/π + 12η (2 + η) (1 − η)2L(2)2/π2
}
,(6.133)

K3 =
η

2
K0 , (6.134)

K = − (K+ +K− +K−1) . (6.135)

In Eqs. (6.129)–(6.135) we have taken σ = 1 as the length unit. Note that Eq.
(6.135) guarantees that c(0) = finite, while Eq. (6.131) yields c(σ+)−c(σ−) =
L(2)/2πα = g(σ+). The latter equation proves the continuity of the indirect
correlation function γ(r) ≡ h(r)− c(r) at r = σ. With the above results, Eqs.
(6.122) and (6.128), one may immediately write the function γ(r). Finally,
we note that the bridge function B(r) is linked to γ(r) and to the cavity
(or background) function y(r) ≡ eφ(r)/kBT g(r), where φ(r) is the interaction
potential, through

B(r) = ln y(r) − γ(r) , (6.136)

and so, within the RFA method, the bridge function is also completely speci-
fied analytically for r > σ once Zs is prescribed.

If one wants to have B(r) also for 0 ≤ r ≤ σ, then an expression for the
cavity function is required in that region. Here we propose such an expression
using a limited number of constraints. First, since the cavity function and its
first derivative are continuous at r = σ, we have

y(1) = gs,
y′(1)
y(1)

=
L(1)

L(2)
− 1
α
− 1 , (6.137)

where Eqs. (6.116) and (6.120) have been used and again σ = 1 has been taken.
Next, we consider the following exact zero-separation theorems [102, 103, 104]:

ln y(0) = Zs(η) − 1 +
∫ η

0

dη′
Zs(η′) − 1

η′
, (6.138)

y′(0)
y(0)

= −6ηy(1) . (6.139)

The four conditions (6.137)–(6.139) can be enforced by assuming a cubic
polynomial form for ln y(r) inside the core, namely

y(r) = exp
(
Y0 + Y1r + Y2r

2 + Y3r
3
)
, (0 ≤ r ≤ 1) , (6.140)

where

Y0 = Zs(η) − 1 +
∫ η

0

dη′
Zs(η′) − 1

η′
, (6.141)

Y1 = −6ηy(1) , (6.142)
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Fig. 6.9. Cavity function of a single component HS fluid in the overlap region
for ρσ3 = 0.3, 0.5, and 0.7. The solid lines represent our proposal (6.140) with
Zs = ZCS

s , while the symbols represent Monte Carlo simulation results [105]

Y2 = 3 ln y(1) − y′(1)
y(1)

− 3Y0 − 2Y1 , (6.143)

Y3 = −2 ln y(1) +
y′(1)
y(1)

+ 2Y0 + Y1. (6.144)

The proposal (6.140) is compared with available Monte Carlo data [105] in
Fig. 6.9, where an excellent agreement can be observed.

Fig. 6.10. Parametric plot of the bridge function B(r) versus the indirect correlation
function γ(r). The dashed line refers to the RFA for η = 0.3, while the solid line
refers to the RFA for η = 0.49. In each case, the branch of the curve to the right
of the circle corresponds to r ≤ 1, while that to the left corresponds to r ≥ 1.
For comparison, the PY closure B(r) = ln[1 + γ(r)] − γ(r) is also plotted (dash-
dotted line)
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Once the cavity function y(r) provided by the RFA method is comple-
mented by (6.140), the bridge function B(r) can be obtained at any distance.
Figure 6.10 presents a parametric plot of the bridge function versus the indi-
rect correlation function as given by the RFA method for two different packing
fractions, as well as the result associated with the PY closure. The fact that
one gets a smooth curve means that within the RFA the oscillations in γ(r)
are highly correlated to those of B(r). Further, the effective closure relation in
the RFA turns out to be density dependent, in contrast with what occurs for
the PY theory. Note that the absolute value |B(r)| for a given value of γ(r)
is smaller in the RFA than the PY value and that the RFA and PY curves
become paradoxically closer for larger densities. Since the PY theory is known
to yield rather poor values of the cavity function inside the core [106, 107], it
seems likely that the present differences may represent yet another manifes-
tation of the superiority of the RFA method, a point that certainly deserves
to be further explored.

6.3.2 The Multicomponent HS Fluid

The method outlined in the preceding subsection will be now extended to an
N -component mixture of additive HS. Note that in a multicomponent system
the isothermal compressibility χ is given by

χ−1 =
1

kBT

(
∂p

∂ρ

)
T,{xj}

=
1

kBT

N∑
i=1

xi

(
∂p

∂ρi

)
T,{xj}

= 1 − ρ

N∑
i,j=1

xixj c̃ij(0) , (6.145)

where c̃ij(q) is the Fourier transform of the direct correlation function cij(r),
which is defined by the OZ equation

h̃ij(q) = c̃ij(q) +
N∑

k=1

ρkh̃ik(q)c̃kj(q) , (6.146)

where hij(r) ≡ gij(r)− 1. Equations (6.145) and (6.146) are the multicompo-
nent extensions of Eqs. (6.96) and (6.95), respectively. Introducing the quan-
tities ĥij(q) ≡ √

ρiρj h̃ij(q) and ĉij(q) ≡ √
ρiρj c̃ij(q), the OZ relation (6.146)

becomes, in matrix notation,

ĉ(q) = ĥ(q) · [I + ĥ(q)]−1 , (6.147)

where I is the N ×N identity matrix. Thus, Eq. (6.145) can be rewritten as

χ−1 =
N∑

i,j=1

√
xixj [δij − ĉij(0)] =

N∑
i,j=1

√
xixj

[
I + ĥ(0)

]−1

ij
. (6.148)
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Similarly to what we did in the single component case, we introduce the
Laplace transforms of rgij(r):

Gij(s) =
∫ ∞

0

dr e−srrgij(r). (6.149)

The counterparts of Eqs. (6.100) and (6.101) are

gij(r) = Θ(r − σij)
[
gij(σ+

ij) + g′ij(σ
+
ij)(r − σij) + · · ·

]
, (6.150)

eσijssGij(s) = σijgij(σ+
ij) +

[
gij(σ+

ij) + σijg
′
ij(σ

+
ij)
]
s−1 + O(s−2). (6.151)

Moreover, the condition of a finite compressibility implies that h̃ij(0) = finite.
As a consequence, for small s,

s2Gij(s) = 1 +H
(0)
ij s

2 +H
(1)
ij s

3 + · · · (6.152)

with H(0)
ij = finite and H(1)

ij = −h̃ij(0)/4π = finite, where

H
(n)
ij ≡ 1

n!

∫ ∞

0

dr (−r)nrhij(r). (6.153)

We are now in the position to generalize the approximation (6.113) to the
N -component case [108]. While such a generalization may be approached in
a variety of ways, two motivations are apparent. On the one hand, we want
to recover the PY result as a particular case in much the same fashion as in
the single component system. On the other hand, we want to maintain the
development as simple as possible. Taking all of this into account, we propose

Gij(s) =
e−σijs

2πs2
(
L(s) · [(1 + αs)I − A(s)]−1

)
ij
, (6.154)

where L(s) and A(s) are the matrices

Lij(s) = L
(0)
ij + L

(1)
ij s+ L

(2)
ij s

2 , (6.155)

Aij(s) = ρi

[
ϕ2(σis)σ3

iL
(0)
ij + ϕ1(σis)σ2

iL
(1)
ij + ϕ0(σis)σiL

(2)
ij

]
, (6.156)

the functions ϕn(x) being defined by Eq. (6.109). We note that, by construc-
tion, Eq. (6.154) complies with the requirement lims→∞ eσijssGij(s) = finite.
Further, in view of Eq. (6.152), the coefficients of s0 and s in the power series
expansion of s2Gij(s) must be 1 and 0, respectively. This yields 2N2 condi-
tions that allow us to express L(0) and L(1) in terms of L(2) and α. The solution
is [108]

L
(0)
ij = ϑ1 + ϑ2σj + 2ϑ2α− ϑ1

N∑
k=1

ρkσkL
(2)
kj , (6.157)
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L
(1)
ij = ϑ1σij +

1
2
ϑ2σiσj + (ϑ1 + ϑ2σi)α− 1

2
ϑ1σi

N∑
k=1

ρkσkL
(2)
kj , (6.158)

where ϑ1 ≡ 2π/(1 − η) and ϑ2 ≡ 6π(M2/M3)η/(1 − η)2.
In parallel with the development of the single component case, L(2) and α

can be chosen arbitrarily. Again, the choice L(2)
ij = α = 0 gives the PY solution

[9, 109]. Since we want to go beyond this approximation, we will determine
those coefficients by taking prescribed values for gij(σij), which in turn, via
Eq. (6.2), give the EOS of the mixture. This also leads to the required value
of χ−1 = ∂(ρZ)/∂ρ, thus making the theory thermodynamically consistent.
In particular, according to Eq. (6.151),

L
(2)
ij = 2πασijgij(σ+

ij). (6.159)

The condition related to χ is more involved. Making use of Eq. (6.152), one
can get h̃ij(0) = −4πH(1)

ij in terms of L(2) and α and then insert it into Eq.

(6.148). Finally, elimination of L(2)
ij in favor of α from Eq. (6.159) produces

an algebraic equation of degree 2N , whose physical root is determined by the
requirement that Gij(s) is positive definite for positive real s. It turns out that
the physical solution corresponds to the smallest of the real roots. Once α is
known, upon substitution into Eqs. (6.154), (6.157), (6.158), and (6.159), the
scheme is complete. Also, using Eq. (6.151), one can easily derive the result

g′ij(σ
+
ij) =

1
2πασij

[
L

(1)
ij − L

(2)
ij

(
1
α

+
1
σij

)]
. (6.160)

It is straightforward to check that the results of the preceding subsection are
recovered by setting σi = σ, regardless of the values of the mole factions.

Once Gij(s) has been determined, inverse Laplace transformation directly
yields rgij(r). Although in principle this can be done analytically, it is more
practical to use one of the efficient methods discussed by Abate and Whitt
[110] to numerically invert Laplace transforms.1

In Fig. 6.11, we present a comparison between the results of the RFA
method with the PY theory and simulation data [64] for the RDF of a ternary
mixture. In the case of the RFA, we have used the eCS2 contact values and
the corresponding isothermal compressibility. The improvement of the RFA
over the PY prediction, particularly in the region near contact, is noticeable.
Although the RFA accounts nicely for the observed oscillations, it seems to
somewhat overestimate the depth of the first minimum.

Explicit knowledge of Gij(s) also allows us to determine the Fourier trans-
form h̃ij(q) through the relation

1 A code using the Mathematica computer algebra system to obtain Gij(s)
and gij(r) with the present method is available from the web page
http://www.unex.es/eweb/fisteor/santos/filesRFA.html
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Fig. 6.11. Radial distribution functions gij(r) for a ternary mixture with diameters
σ1 = 1, σ2 = 2, and σ3 = 3 at a packing fraction η = 0.49 with mole fractions
x1 = 0.7, x2 = 0.2, and x3 = 0.1. The circles are simulation results [64], the solid
lines are the RFA predictions, and the dotted lines are the PY predictions

h̃ij(q) = −2π
Gij(s) −Gij(−s)

s

∣∣∣∣
s=iq

. (6.161)

The structure factor Sij(q) may be expressed in terms of h̃ij(q) as [4]

Sij(q) = xiδij + ρxixj h̃ij(q). (6.162)

In the particular case of a binary mixture, rather than the individual structure
factors Sij(q), it is some combination of them which may be easily associated
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with fluctuations of the thermodynamic variables [111, 112]. Specifically, the
quantities [4]

Snn(q) = S11(q) + S22(q) + 2S12(q) , (6.163)

Snc(q) = x2S11(q) − x1S22(q) + (x2 − x1)S12(q) , (6.164)

Scc(q) = x2
2S11(q) + x2

1S22(q) − 2x1x2S12(q) (6.165)

are sometimes required.
After replacement of ĥij(q) = √

ρiρj h̃ij(q) in Eq. (6.147), one easily gets
c̃ij(q). Subsequent inverse Fourier transformation yields cij(r). The result
gives cij(r) for r > σij as the superposition of N Yukawas [113], namely

cij(r) =
N∑

�=1

K
(�)
ij

e−κ�r

r
, (6.166)

where q = ±iκ� with � = 1, . . . , N are the zeros of det
[
I + ĥ(q)

]
and the

amplitudes K(�)
ij are obtained by applying the residue theorem as

K
(�)
ij =

iκ�

2π
lim

q→iκ�

c̃ij(q)(q − iκ�) . (6.167)

The indirect correlation functions γij(r) ≡ hij(r) − cij(r) readily follow
from the previous results for the RDF and direct correlation functions. Finally,
in this case the bridge functions Bij(r) for r > σij are linked to gij(r) and
cij(r) through

Bij(r) = ln gij(r) − γij(r) (6.168)

and so once more we have a full set of analytical results for the structural
properties of a multicomponent fluid mixture of HS once the contact values
gij(σij) are specified.

6.4 Other Related Systems

The philosophy behind the RFA method to derive the structural properties
of three-dimensional HS systems can be adapted to deal with other related
systems. The main common features of the RFA can be summarized as follows.
First, one chooses to represent the RDF in Laplace space. Next, using as a
guide the low-density form of the Laplace transform, an auxiliary function is
defined which is approximated by a rational or a rational-like form. Finally,
the coefficients are determined by imposing some basic consistency conditions.
In this section we consider the cases of sticky-hard-sphere (SHS), square-well,
and hard-disk fluids. In the two former cases the RFA program is followed
quite literally, while in the latter case it is done more indirectly through the
RFA method as applied to hard rods (d = 1) and hard spheres (d = 3).
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6.4.1 Sticky Hard Spheres

The SHS fluid model has received a lot of attention since it was first intro-
duced by Baxter in 1968 [114] and later extended to multicomponent mixtures
by Perram and Smith [115] and, independently, by Barboy [116, 117]. In this
model, the molecular interaction may be defined via square-well (SW) poten-
tials of infinite depth and vanishing width, thus embodying the two essential
characteristics of real molecular interactions, namely a harsh repulsion and an
attractive part. In spite of their known shortcomings [118, 119], an important
feature of SHS systems is that they allow for an exact solution of the OZ equa-
tion in the PY approximation [114, 115]. Furthermore, they are thought to be
appropriate for describing structural properties of colloidal systems, micelles,
and microemulsions, as well as some aspects of gas–liquid equilibrium, ionic
fluids and mixtures, solvent-mediated forces, adsorption phenomena, polydis-
perse systems, and fluids containing chainlike molecules [120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155].

Let us consider an N -component mixture of spherical particles interacting
according to the SW potential

φij(r) =

⎧⎨
⎩

∞, r < σij ,
−εij , σij < r < Rij ,
0, r > Rij .

(6.169)

As in the case of additive HS, σij = (σi + σj)/2 is the distance between the
centers of a sphere of species i and a sphere of species j at contact. In addition,
εij is the well depth and Rij − σij indicates the well width. We now take the
SHS limit [114], namely

Rij → σij , εij → ∞, τij ≡ 1
12

σij

Rij − σij
e−εij/kBT = finite , (6.170)

where the τij are monotonically increasing functions of the temperature T and
their inverses measure the degree of “adhesiveness” of the interacting spheres
i and j. Even without strictly taking the mathematical limits (6.170), short-
range SW fluids can be well described in practice by the SHS model [156].

The virial EOS for the SHS mixture is given by

Z = 1 +
1
6
ρ

N∑
i,j=1

xixj

∫
dr ryij(r)

d
dr

e−φij(r)/kBT

= 1 +
2π
3
ρ

N∑
i,j=1

xixjσ
3
ijyij(σij)

[
1 − 1

12τij

(
3 +

y′ij(σij)
yij(σij)

)]
,(6.171)

where yij(r) ≡ gij(r)eφij(r)/kBT is the cavity function and y′ij(r) = dyij(r)/dr.
Since yij(r) must be continuous, it follows that
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gij(r) = yij(r)
[
Θ(r − σij) +

σij

12τij
δ(r − σij)

]
. (6.172)

The case of an HS system is recovered by taking the limit of vanishing adhe-
siveness τ−1

ij → 0, in which case Eq. (6.171) reduces to the three-dimensional
version of Eq. (6.2). On the other hand, the compressibility EOS, Eq. (6.145),
is valid for any interaction potential, including SHS.

As in the case of HS, it is convenient to define the Laplace transform
(6.149). The condition yij(σij) = finite translates into the following large s
behavior of Gij(s):

eσijsGij(s) = σ2
ijyij(σij)

(
1

12τij
+ σ−1

ij s
−1

)
+ O(s−2) , (6.173)

which differs from (6.151): eσijsGij(s) ∼ s−1 for HS and eσijsGij(s) ∼ s0

for SHS. However, the small s behavior is still given by Eq. (6.152), as a
consequence of the condition χ−1 = finite.

The RFA proposal for SHS mixtures [157] keeps the form (6.154), except
that now

Lij(s) = L
(0)
ij + L

(1)
ij s+ L

(2)
ij s

2 + L
(3)
ij s

3 , (6.174)

Aij(s) = ρi

[
ϕ2(σis)σ3

iL
(0)
ij + ϕ1(σis)σ2

iL
(1)
ij + ϕ0(σis)σiL

(2)
ij − e−σisL

(3)
ij

]
,

(6.175)

instead of Eqs. (6.155) and (6.156). By construction, Eqs. (6.154), (6.174), and
(6.175) comply with the requirement lims→∞ eσijsGij(s) = finite. Further, in
view of Eq. (6.152), the coefficients of s0 and s in the power series expansion
of s2Gij(s) must be 1 and 0, respectively. This yields 2N2 conditions that
allow us to express L(0) and L(1) in terms of L(2), L(3), and α as [157]

L
(0)
ij = ϑ1 + ϑ2σj + 2ϑ2α− ϑ1

N∑
k=1

ρk

(
σkL

(2)
kj − L

(3)
kj

)
− ϑ2

N∑
k=1

ρkσkL
(3)
kj ,

(6.176)

L
(1)
ij = ϑ1σij +

1
2
ϑ2σiσj + (ϑ1 + ϑ2σi)α− 1

2
ϑ1σi

N∑
k=1

ρk

(
σkL

(2)
kj − L

(3)
kj

)

−1
2

(ϑ1 + ϑ2σi)
N∑

k=1

ρkσkL
(3)
kj , (6.177)

where ϑ1 and ϑ2 are defined below Eq. (6.158). We have the freedom to choose
L(3) and α, but L(2) is constrained by the condition (6.173), i.e., the ratio
between the first and second terms in the expansion of eσijsGij(s) for large s
must be exactly equal to σij/12τij .
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First-Order Approximation (PY Solution)

The simplest approximation consists of making α = 0. In view of the condition
eσijsGij(s) ∼ s0 for large s, this implies that L(3)

ij = 0. In that case, the large
s behavior that follows from Eq. (6.154) is

2πeσijsGij(s) = L
(2)
ij +

[
L

(1)
ij +

(
L(2) · D

)
ij

]
s−1 + O(s−2) , (6.178)

where

Dij ≡ ρi

(
1
2
σ2

iL
(0)
ij − σiL

(1)
ij + L

(2)
ij

)
. (6.179)

Comparison with Eq. (6.173) yields

yij(σij) =
6τij
πσ2

ij

L
(2)
ij , (6.180)

12τijL
(2)
ij

σij
= L

(1)
ij +

N∑
k=1

L
(2)
ik Dkj . (6.181)

Taking into account Eqs. (6.176) and (6.177) (with L(2)
ij = L

(2)
ji and of course

also with α = 0 and L(3) = 0), Eq. (6.181) becomes a closed equation for L(2):

12τijL
(2)
ij

σij
= ϑ1σij +

1
2
ϑ2σiσj −

1
2
ϑ1

N∑
k=1

ρkσk

(
L

(2)
ki σj + L

(2)
kj σi

)

+
N∑

k=1

ρkL
(2)
ki L

(2)
kj . (6.182)

The physical root L(2) of Eq. (6.182) is the one vanishing in the HS limit
τij → ∞. Once known, Eq. (6.180) gives the contact values.

This first-order approximation obtained from the RFA method turns out
to coincide with the exact solution of the PY theory for SHS [115].

Second-Order Approximation

As in the case of HS mixtures, a more flexible proposal is obtained by keeping
α (and, consequently, L(3)

ij ) different from zero. In that case, instead of Eq.
(6.178), one has

2πeσijsGij(s) =
L

(3)
ij

α

[
1 +

(
L

(2)
ij

L
(3)
ij

− 1
α

)
s−1

]
+ O(s−2) . (6.183)
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This implies

L
(3)
ij =

πσ2
ij

6τij
αyij(σij) , (6.184)

12τijL
(3)
ij

σij
= L

(2)
ij −

L
(3)
ij

α
. (6.185)

If we fix yij(σij), Eqs. (6.176), (6.177), (6.184), and (6.185) allow one to
express L(0), L(1), L(2), and L(3) as linear functions of α. Thus, only the scalar
parameter α remains to be fixed, analogously to what happens in the HS case.
As done in the latter case, one possibility is to choose α in order to reproduce
the isothermal compressibility χ given by Eq. (6.148). To do so, one needs to
find the coefficients H(1)

ij appearing in Eq. (6.152). The result is [157]

H(0) = C(0) ·
(
I − A(0)

)−1

, (6.186)

H(1) = C(1) ·
(
I − A(0)

)−1

, (6.187)

where

C
(0)
ij =

1
2π
L

(2)
ij +

N∑
k=1

A
(2)
kj −

N∑
k=1

σik

(
αδkj −A

(1)
kj

)
−

N∑
k=1

1
2
σ2

ik

(
δkj −A

(0)
kj

)
,

(6.188)

C
(1)
ij =

1
2π
L

(3)
ij +

N∑
k=1

A
(3)
kj +

N∑
k=1

σikA
(2)
kj −

N∑
k=1

(
1
2
σ2

ik +H
(0)
ik

)(
αδkj −A

(1)
kj

)

−
N∑

k=1

(
1
6
σ3

ik + σikH
(0)
ik

)(
δkj −A

(0)
kj

)
, (6.189)

A
(n)
ij = (−1)nρi

[
σn+3

i

(n+ 3)!
L

(0)
ij − σn+2

i

(n+ 2)!
L

(1)
ij +

σn+1
i

(n+ 1)!
L

(2)
ij − σn

i

n!
L

(3)
ij

]
.

(6.190)

Equation (6.187) gives H(1) in terms of α:H(1)
ij = Pij(α)/[Q(α)]2, where Pij(α)

denotes a polynomial in α of degree 2N and Q(α) denotes a polynomial of
degree N . It turns out then that, seen as a function of α, χ is the ratio of
two polynomials of degree 2N . Given a value of χ, one may solve for α. The
physical solution, which has to fulfill the requirement that Gij(s) is positive
definite for positive real s, corresponds to the smallest positive real root.

Once α is known, the scheme is complete: Eq. (6.184) gives L(3), then L(2)

is obtained from Eq. (6.185), and finally L(1) and L(0) are given by Eqs. (6.176)
and (6.177), respectively. Explicit knowledge of Gij(s) through Eqs. (6.154),
(6.174), and (6.175) allows one to determine the Fourier transform h̃ij(q)
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and the structure factor Sij(q) through Eqs. (6.161) and (6.162), respectively.
Finally, inverse Laplace transformation of Gij(s) yields gij(r).2

Single-Component SHS Fluids

The special case of single-component SHS fluids [158, 159] can be obtained
from the multicomponent one by taking σij = σ and τij = τ . Thus, the
Laplace transform of rg(r) in the RFA is

G(s) =
e−s

2πs2
L(0) + L(1)s+ L(2)s2 + L(3)s3

1 + αs− ρ
[
ϕ2(s)L(0) + ϕ1(s)L(1) + ϕ0(s)L(2) − e−sL(3)

] ,
(6.191)

where we have taken σ = 1. Equations (6.176) and (6.177) become

L(0) = 2π
1 + 2η

(1 − η)2
+

12η
1 − η

(
πα

1 − η
− L(2)

)
+

12η
(1 − η)2

(1 − 4η)L(3) , (6.192)

L(1) = 2π
1 + 1

2η

(1 − η)2
+

2
1 − η

(
π

1 + 2η
1 − η

α− 3ηL(2)

)
− 18η2

(1 − η)2
L(3). (6.193)

The choice α = L(3) = 0 makes Eq. (6.191) coincide with the exact solution
to the PY approximation for SHS [114], where L(2) is the physical root (i.e., the
one vanishing in the limit τ → ∞) of the quadratic equation [see Eq. (6.182)]

12τL(2) = 2π
1 + 2η

(1 − η)2
− 12η

1 − η
L(2) +

6
π
ηL(2)2. (6.194)

We can go beyond the PY approximation by prescribing a contact value
y(1), so that, according to Eqs. (6.184) and (6.185),

L(3) =
π

6
α

τ
y(1) , (6.195)

L(2) =
(

12τ +
1
α

)
L(3) . (6.196)

By prescribing the isothermal compressibility χ, the parameter α can be
obtained as the physical solution (namely, the one remaining finite in the
limit τ → ∞) of a quadratic equation [159]. Thus, given an EOS for the SHS
fluid, one can get the thermodynamically consistent values of y(1) and χ and
determine from them all the coefficients appearing in Eq. (6.191).

Figure 6.12 shows the cavity function for η = 0.164 and τ = 0.13 as
obtained from Monte Carlo simulations [154] and as predicted by the PY and
RFA theories, the latter making use of the EOS recently proposed by Miller
and Frenkel [155]. It can be observed that the RFA is not only more accurate
than the PY approximation near r = 1 but also near r = 2. On the other
hand, none of these two approximations account for the singularities (delta
peaks and/or discontinuities) of y(r) at r =

√
8/3, 5/3,

√
3, 2, . . . [150, 151,

152, 153, 154].
2 See Footnote one.
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Fig. 6.12. Cavity function of a single-component SHS fluid for η = 0.164 and
τ = 0.13. The solid line represents simulation data [154]. The dotted and dashed
lines represent the PY and RFA approaches, respectively

6.4.2 Single-Component Square-Well Fluids

Now, we consider again the SW interaction potential (6.169) but for a single
fluid, i.e., σij = σ, εij = ε, Rij = R. Since no exact solution of the PY theory
for the SW potential is known, the application of the RFA method is more
challenging in this case than for HS and SHS fluids.

As in the cases of HS and SHS, the key quantity is the Laplace transform
of rg(r) defined by Eq. (6.98). It is again convenient to introduce the auxiliary
function Ψ(s) through Eq. (6.99). As before, the conditions g(r) = finite and
χ = finite imply Eqs. (6.102) and (6.104), respectively. However, the impor-
tant difference between HS and SHS fluids is that in the latter case G(s) must
reflect the fact that g(r) is discontinuous at r = R as a consequence of the dis-
continuity of the potential φ(r) and the continuity of the cavity function y(r).
This implies that G(s), and hence Ψ(s), must contain the exponential term
e−(R−σ)s. This manifests itself in the low-density limit, where the condition
limρ→0 y(r) = 1 yields

lim
ρ→0

Ψ(s) =
1
2π

s3

e1/T∗(1 + s) − e−(R−1)s(e1/T∗ − 1)(1 +Rs)
, (6.197)

where T ∗ ≡ kBT/ε and we have taken σ = 1.
In the spirit of the RFA method, the simplest form that complies with Eq.

(6.102) and is consistent with Eq. (6.197) is [160]

Ψ(s) =
1
2π

−12η + E1s+ E2s
2 +E3s

3

1 +Q0 +Q1s− e−(R−1)s (Q0 +Q2s)
, (6.198)

where the coefficients Q0, Q1, Q2, E1, E2, and E3 are functions of η, T ∗, and
R. The condition (6.104) allows one to express the parameters Q1, E1, E2,
and E3 as linear functions of Q0 and Q2 [160, 161]:
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Q1 =
1

1 + 2η

[
1 +

η

2
+ 2η(R3 − 1)Q2 −

η

2
(R− 1)2(R2 + 2R+ 3)Q0

]
+Q2 − (R− 1)Q0 , (6.199)

E1 =
6η2

1 + 2η
[
3 − 4(R3 − 1)Q2 + (R− 1)2(R2 + 2R+ 3)Q0

]
, (6.200)

E2 =
6η

1 + 2η
{1 − η − 2(R− 1) [1 − 2ηR(R+ 1)]Q2

+(R− 1)2
[
(1 − η(R+ 1)2

]
Q0

}
, (6.201)

E3 =
1

1 + 2η
{
(1 − η)2 + 6η(R− 1)

(
R+ 1 − 2ηR2

)
Q2

− η(R− 1)2[4 + 2R− η(3R2 + 2R+ 1)]Q0

}
. (6.202)

From Eq. (6.102), we have

g(1+) =
Q1

E3
. (6.203)

The complete RDF is given by Eq. (6.122), where now Eq. (6.198) must be
used in Eq. (6.123). In particular, ψ1(r) and ψ2(r) are

ψ1(r) = ψ10(r)Θ(r) + ψ11(r + 1 −R)Θ(r + 1 −R) , (6.204)

ψ2(r) = ψ20(r)Θ(r)+ψ21(r+1−R)Θ(r+1−R)+ψ22(r+2−2R)Θ(r+2−2R) ,
(6.205)

where

ψ1k(r) = 2π
3∑

i=1

W1k(si)
E′(si)

siesix , (6.206)

ψ2k(r) = −4π2
3∑

i=1

[
rW2k(si) +W ′

2k(si) −W2k(si)
E′′(si)
E′(si)

]
esir

[E′(si)]2
.

(6.207)

Here, si are the three distinct roots of E(s) ≡ −12η+E1s+E2s
2 +E3s

3 and

W10(s) ≡ 1 +Q0 +Q1s, W11(s) ≡ −(Q0 +Q2s) (6.208)

W20(s) ≡ s[W10(s)]2, W21(s) ≡ 2sW10(s)W11(s), W22(s) ≡ s[W11(s)]2 .
(6.209)

To close the proposal, we need to determine the parameters Q0 and Q2 by
imposing two new conditions. An obvious condition is the continuity of the
cavity function at r = R, that implies

g(R+) = e1/T∗
g(R−) . (6.210)
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This yields (
1 − e−1/T∗

)
ψ10(R− 1) = −ψ11(0) = 2π

Q2

E3
. (6.211)

As an extra condition, we could enforce the continuity of the first derivative
y′(r) at r = R [162]. However, this complicates the problem too much with-
out any relevant gain in accuracy. In principle, it might be possible to impose
consistency with a given EOS, via either the virial route, the compressibility
route, or the energy route. But this is not practical since no simple EOS for
SW fluids is at our disposal for wide values of density, temperature, and range.
As a compromise between simplicity and accuracy, we fix the parameter Q0

at its exact zero-density limit value, namely Q0 = e1/T∗ − 1 [160]. Therefore,
Eq. (6.211) becomes a transcendental equation for Q2 that needs to be solved
numerically. For narrow SW potentials, however, it is possible to replace the
exact condition (6.210) by a simpler one allowing Q2 to be obtained ana-
lytically [161], which is especially useful for determining the thermodynamic
properties [161, 163].

It can be proven that the RFA proposal (6.198) reduces to the exact solu-
tions of the PY equation [42, 43, 114] in the HS limit, i.e., ε→ 0 or R→ 1, and
in the SHS limit, i.e., ε→ ∞ and R→ 1 with (R−1)e1/T∗

= finite [160, 161].
Comparison with computer simulations [160, 161, 163, 164] shows that the

RFA for SW fluids is rather accurate at any fluid density if the potential well

Fig. 6.13. Radial distribution function of a single-component SW fluid for R = 1.05,
ρσ3 = 0.8, and T ∗ = 0.5 (top panel); for R = 1.5, ρσ3 = 0.4, and T ∗ = 1.5 (middle
panel); and for R = 2.0, ρσ3 = 0.4, and T ∗ = 3.0 (bottom panel). The circles
represent simulation data [164] and the solid lines refer to the results obtained from
the RFA method
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is sufficiently narrow (say R ≤ 1.2), as well as for any width if the density
is small enough (say ρσ3 ≤ 0.4). However, as the width and/or the density
increases, the RFA predictions worsen, especially at low temperatures. As an
illustration, Fig. 6.13 compares the RDF provided by the RFA with Monte
Carlo data [164] for three representative cases.

6.4.3 Hard Disks

As is well known, the PY theory is exactly solvable for HS fluids with
an odd number of dimensions [165, 166, 167, 168, 169]. In particular, in the
case of hard rods (d = 1), the PY theory provides the exact RDF g(r) or,
equivalently, the exact cavity function y(r) outside the hard core (i.e., for
r > σ). However, it does not reproduce the exact y(r) in the overlapping
region (i.e., for r < σ) [106]. The full exact one-dimensional cavity function
is [106]

yHR(r|η) =
e−(r−1)η/(1−η)

1 − η
+

∞∑
n=2

ηn−1e−(r−n)η/(1−η)

(1 − η)n(n− 1)!
(r − n)n−1Θ(r − n) ,

(6.212)
where the subscript HR stands for hard rods and, as usual, σ = 1 has been
taken. Consequently, one has

gHR(1+|η) =
1

1 − η
,

∫ ∞

0

dr rhHR(r|η) ≡ H
(0)
HR(η) = −1

2
+

2
3
η − 1

4
η2 .

(6.213)
When d is even, the PY equation is not analytically solvable for the HS inter-
action. In particular, in the important case of hard disks (d = 2), one must
resort to numerical solutions of the PY equation [1, 170]. Alternatively, a sim-
ple heuristic approach has proven to yield reasonably good results [171]. Such
an approach is based on the näıve assumption that the structure and spatial
correlations of a hard-disk fluid share some features with those of a hard-rod
and a HS fluid. This fuzzy idea becomes a more specific one by means of the
following simple model [171]:

gHD(r|η) = ν(η)gHR(r|ω1(η)η) + [1 − ν(η)]gHS(r|ω3(η)η) . (6.214)

Here, the subscript HD stands for hard disks (d = 2) and the subscript HS
stands for hard spheres (d = 3). The parameter ν(η) is a density-dependent
mixing parameter, while ω1(η)η and ω3(η)η are the packing fractions in one
and three dimensions, respectively, which are “equivalent” to the packing
fraction η in two dimensions. In Eq. (6.214), it is natural to take for gHR(r|η)
the exact solution, Eq. (6.212). As for gHR(r|η), one might use the RFA recipe
described in Sect. 6.3. However, in order to keep the model (6.214) as simple
as possible, it is sufficient for practical purposes to take the PY solution,
Eq. (6.108). In the latter approximation,
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gHS(1+|η) =
1 + η/2
(1 − η)2

,

∫ ∞

0

dr rhHS(r|η) ≡ H
(0)
HS (η) = −10 − 2η + η2

20(1 + 2η)
.

(6.215)

In order to close the model (6.214), we still need to determine the pa-
rameters ν(η), ω1(η), and ω3(η). To that end, we first impose the condi-
tion that Eq. (6.214) must be consistent with a prescribed contact value
gHD(1+|η) or, equivalently, with a prescribed compressibility factor ZHD(η) =
1 + 2ηgHD(1+|η), with independence of the choice of the mixing parameter
ν(η). In other words,

gHD(1+|η) = gHR(1+|ω1(η)η) = gHS(1+|ω3(η)η) . (6.216)

Making use of Eqs. (6.213) and (6.215), this yields

ω1(η) =
gHD(1+|η) − 1
ηgHD(1+|η) , ω3(η) =

4gHD(1+|η) + 1 −
√

24gHD(1+|η) + 1
4ηgHD(1+|η) .

(6.217)

Once ω1(η) and ω3(η) are known, we can determine ν(η) by imposing that
the model (6.214) reproduces the isothermal compressibility χHD(η) thermo-
dynamically consistent with the prescribed ZHD(η) [cf. Eq. (6.97)]. From Eqs.
(6.96) and (6.214), one has

χHD(η) = 1 + 8η
∫ ∞

0

dr r {ν(η)hHR(r|ω1(η)η) + [1 − ν(η)]hHS(r|ω3(η)η)} ,
(6.218)

so that

ν(η) =
[χHD(η) − 1] /8η −H

(0)
HS (ω3(η)η)

H
(0)
HR(ω1(η)η) −H

(0)
HS (ω3(η)η)

, (6.219)

where H(0)
HR(η) and H(0)

HS (η) are given by Eqs. (6.213) and (6.215), respectively.
Once a sensible EOS for hard disks is chosen (see, for instance, Table 6.1

and Chap. 3), Eqs. (6.217) and (6.219) provide the parameters of the model
(6.214). The results show that the scaling factor ω1(η) is a decreasing function,
while ω3(η) is an increasing function [171]. As for the mixing parameter ν(η),
it is hardly dependent on density and takes values around ν(η) � 0.35–0.40.

Comparison of the interpolation model (6.214) with computer simulation
results shows a surprisingly good agreement despite the crudeness of the model
and the absence of empirical fitting parameters, especially at low and mod-
erate densities [171]. The discrepancies become important only for distances
beyond the location of the second peak and for densities close to the stability
threshold.
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6.5 Perturbation Theory

When one wants to deal with realistic intermolecular interactions, the prob-
lem of deriving the thermodynamic and structural properties of the system
becomes rather formidable. Thus, perturbation theories of liquids have been
devised since the mid-twentieth century. In the case of single-component flu-
ids, the use of an accurate and well-characterized RDF for the HS fluid in a
perturbation theory opens up the possibility of deriving a closed theoretical
scheme for the determination of the thermodynamic and structural proper-
ties of more realistic models, such as the Lennard–Jones (LJ) fluid. In this
section, we will consider this model system, which captures the basic physical
properties of real non-polar fluids, to illustrate the procedure when the RFA
method is used.

In the application of the perturbation theory of liquids, the stepping stone
has been the use of the HS RDF obtained from the solution to the PY equa-
tion. Unfortunately, the absence of thermodynamic consistency present in the
PY approximation (as well as in other integral equation theories) may clearly
contaminate the results derived from its use within a perturbative treatment.
In what follows, we will reanalyze the different theoretical schemes for the
thermodynamics of LJ fluids that have been constructed with perturbation
theory, taking as the reference system the HS fluid. This includes the con-
sideration of the RDF as obtained with the RFA method, which embodies
thermodynamic consistency, as well as the proposal of a unifying framework
in which all schemes fit in. With our development, we will be able to present
a formulation which lends itself to relatively easy numerical calculations while
retaining the merits that analytical results provide, namely a detailed knowl-
edge and control of all the approximations involved.

Let us consider a three-dimensional fluid system defined by a pair inter-
action potential φ(r). The virial and energy EOS express the compressibility
factor Z and the excess part of the Helmholtz free energy per unit volume
f ex, respectively, in terms of the RDF of the system as

Z = 1 − 2
3
πρβ

∫ ∞

0

dr
∂φ(r)
∂r

g(r)r3 , (6.220)

f ex

ρkBT
= 2πρβ

∫ ∞

0

dr φ(r)g(r)r2 , (6.221)

where β ≡ 1/kBT . Let us now assume that φ(r) is split into a known (ref-
erence) part φ0(r) and a perturbation part φ1(r). The usual perturbative
expansion for the Helmholtz free energy to first order in β leads to [2]

f

ρkBT
=

f0
ρkBT

+ 2πρβ
∫ ∞

0

dr φ1(r)g0(r)r2 + O
(
β2
)
, (6.222)

where f0 and g0(r) are the free energy and the RDF of the reference system,
respectively.
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The LJ potential is

φLJ(r) = 4ε
(
r−12 − r−6

)
, (6.223)

where ε is the depth of the well and, for simplicity, we have taken the distance
at which the potential vanishes as the length unit, i.e., φLJ(r = 1) = 0. For
this potential, the reference system may be forced to be a HS system, i.e., one
can set

φ0(r) = φHS(r) =
{
∞, r ≤ σ0 ,
0, r > σ0 ,

(6.224)

where σ0 is a conveniently chosen effective HS diameter. In this case, the
Helmholtz free energy to this order is approximated by

fLJ

ρkBT
≈ fHS

ρkBT
+ 2πρβ

∫ ∞

σ0

dr φLJ(r)gHS(r/σ0)r2. (6.225)

Note that Eq. (6.225) may be rewritten in terms of the Laplace transform
G(s) of (r/σ0)gHS(r/σ0) as

fLJ

ρkBT
≈ fHS

ρkBT
+ 2πρβσ3

0

∫ ∞

0

dsΦLJ(s)G(s) , (6.226)

where ΦLJ(s) satisfies

rφLJ(r) = σ0

∫ ∞

0

ds e−rs/σ0ΦLJ(s) , (6.227)

so that

ΦLJ(s) = 4εσ−2
0

[
(s/σ0)10

10!
− (s/σ0)4

4!

]
. (6.228)

Irrespective of the value of the diameter σ0 of the reference system, the right-
hand side of Eq. (6.226) represents always an upper bound for the value of the
free energy of the real system. Therefore, it is natural to determine σ0 so as
to provide the least upper bound. This is precisely the variational scheme of
Mansoori and Canfield [172, 173] and Rasaiah and Stell [174], usually referred
to as MC/RS, and originally implemented with the PY theory for G(s), Eq.
(6.108). In our case, however, we will consider G(s) as given by the RFA
method, Eq. (6.113). Therefore, at fixed ρ and β, the effective diameter σ0 in
the MC/RS scheme is obtained from the conditions

∂

∂σ0

{∫ η0

0

dη
ZHS(η) − 1

η
+ 48βεσ−2

0

∫ ∞

0

dsG(s|η0)

×
[
(s/σ0)10

10!
− (s/σ0)4

4!

]}
= 0 , (6.229)
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∂2

∂σ2
0

{∫ η0

0

dη
ZHS(η) − 1

η
+ 48βεσ−2

0

∫ ∞

0

dsG(s|η0)

×
[
(s/σ0)10

10!
− (s/σ0)4

4!

]}
> 0. (6.230)

In these equations, use has been made of the thermodynamic relationship be-
tween the free energy and the compressibility factor, Eq. (6.78). Moreover, we
have called η0 ≡ (π/6)ρσ3

0 and have made explicit with the notation G(s|η0)
the fact that the HS RDF depends on the packing fraction η0.

Even if the reference system is not forced to be an HS fluid, one can still use
Eq. (6.226) provided an adequate choice for σ0 is made such that the expansion
involved in the right-hand side of Eq. (6.222) yields the right-hand side of Eq.
(6.226) to order β2. This is the idea of the Barker and Henderson [175] first-
order perturbation scheme (BH1), where the effective HS diameter is

σ0 =
∫ ∞

0

dr
[
1 − e−βφLJ(r)

]
. (6.231)

The same ideas may be carried out to higher order in the perturbation
expansion. The inclusion of the second-order term in the expansion yields the
so-called macroscopic compressibility approximation [2] for the free energy,
namely

fLJ

ρkBT
=

f0
ρkBT

+ 2πρβ
∫ ∞

0

dr φ1(r)g0(r)r2

−πρβ2χ0

∫ ∞

0

dr φ2
1(r)g0(r)r

2 + O
(
β3
)
, (6.232)

where χ0 is the (reduced) isothermal compressibility of the reference system.3

To implement a particular perturbation scheme in this approximation un-
der a unifying framework that eventually leads to easy numerical evaluation,
two further assumptions may prove convenient. First, the perturbation poten-
tial φ1(r) ≡ φLJ(r)−φ0(r) may be split into two parts using some “molecular
size” parameter ξ ≥ σ0 such that

φ1(r) =
{
φ1a(r) , 0 ≤ r ≤ ξ ,
φ1b(r) , r > ξ .

(6.233)

Next, a choice for the RDF for the reference system is done in the form

g0 (r) ≈ θ(r)yHS(r/σ0) , (6.234)

3 The macroscopic compressibility approach is only one of the possibilities of ap-
proximation to the second order Barker–Henderson perturbation theory term.
Another successful approach is the local-compressibility approximation (see [2],
p 308). This expresses the free energy in terms of φ1(r) and HS quantities
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where yHS is the cavity (background) correlation function of the HS system
and θ(r) is a step function defined by

θ(r) =
{
θa(r) , 0 ≤ r ≤ ξ ,
θb(r) , r > ξ ,

(6.235)

in which the functions θa(r) and θb(r) depend on the scheme.
With these assumptions, the integrals involved in Eq. (6.232) may be

rewritten as

In ≡
∫ ∞

0

dr φn
1 (r)g0(r)r2

=
∫ σ0

0

dr φn
1a(r)θa(r)yHS(r/σ0)r2 +

∫ ξ

σ0

dr φn
1a(r)θa(r)gHS(r/σ0)r2

+
∫ ∞

ξ

dr φn
1b(r)θb(r)gHS(r/σ0)r2 , (6.236)

with n = 1, 2 and where the fact that yHS(r/σ0) = gHS(r/σ0) when r > σ0

has been used. Decomposing the last integral as
∫∞

ξ
=
∫∞

σ0
−
∫ ξ

σ0
and applying

the same step as in Eq. (6.226), Eq. (6.236) becomes

In = σ3
0

∫ ∞

0

dsΦnb(s)G(s) +
∫ σ0

0

dr φn
1a(r)θa(r)yHS(r/σ0)r2

+
∫ ξ

σ0

dr [φn
1a(r)θa(r) − φn

1b(r)θb(r)] gHS(r/σ0)r2 , (6.237)

where the functions Φ1b(s) and Φ2b(s) are defined by the relation

rφn
1b(r)θb(r) = σ0

∫ ∞

0

ds e−rs/σ0Φnb(s) . (6.238)

In the Barker–Henderson second-order perturbation scheme (BH2), one
takes

θa(r) = 0, θb(r) = 1, ξ = σ0, φ1a(r) = 0, φ1b(r) = 4ε
(
r−12 − r−6

)
,

(6.239)

and σ0 is computed according to Eq. (6.231). This choice ensures that

fLJ

ρkBT
=

fHS

ρkBT
+ 2πρβ

∫ ∞

σ0

dr φ1(r)gHS(r/σ0)r2

−πρβ2χHS

∫ ∞

σ0

dr φ2
1(r)gHS(r/σ0)r2 +O

(
β3
)
. (6.240)

On the other hand, if one chooses

θa(r) = exp [−β (φLJ(r) + ε)] , θb(r) = 1, ξ = 21/6 , (6.241)
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φ1a(r) = −ε, φ1b(r) = 4ε
(
r−12 − r−6

)
, (6.242)

the scheme leads to the Weeks–Chandler–Andersen (WCA) theory [176] if
one determines the HS diameter through the condition χ0 = χHS [177], which
in turn implies∫ σ0

0

dr r2e−βφ0(r)yHS(r/σ0) =
∫ 21/6

σ0

dr r2gHS(r/σ0)
[
1 − e−βφ0(r)

]
.

(6.243)
To close the scheme, the HS cavity function has to be provided in the range 0 ≤
r ≤ σ0. Fortunately, relatively simple expressions for yHS(r/σ0) are available
in the literature [178, 179, 180], apart from our own proposal, Eq. (6.140).

Note that θb(r) and φ1b(r), and thus also Φnb(s), are the same functions in
the BH2 and WCA schemes. It is convenient, in order to have all the quantities
needed to evaluate fLJ in these schemes, to provide explicit expressions for
Φ1b(s) and Φ2b(s). These are given by [cf. Eq. (6.228)]

Φ1b(s) = ΦLJ(s) , (6.244)

Φ2b(s) = 16ε2σ−2
0

[
(s/σ0)22

22!
− 2

(s/σ0)16

16!
+

(s/σ0)10

10!

]
. (6.245)

Up to this point, we have embodied the most popular perturbation schemes
within a unified framework that requires as input only the EOS of the HS
fluid in order to compute the Helmholtz free energy of the LJ system and
leads to relatively easy numerical computations. It should be clear that a
variety of other possible schemes, requiring the same little input, fit in our
unified framework, which is based on the RFA method for gHS(r/σ0) and G(s).
Once fLJ has been determined, the compressibility factor of the LJ fluid at
a given order of the perturbation expansion readily follows from Eqs. (6.222)
or (6.232) through the thermodynamic relation

ZLJ = ρ

(
∂

∂ρ

fLJ

ρkBT

)
T

. (6.246)

Taking into account that the HS fluid presents a fluid–solid transition at
a freezing packing fraction ηf � 0.494 [181] and a solid–fluid transition at
a melting packing fraction ηm � 0.54 [181], the fluid–solid and solid–fluid
coexistence lines for the LJ system may be computed from the values (ρ, T )
determined from the conditions (π/6)ρσ3

0(ρ, T ) = ηf and (π/6)ρσ3
0(ρ, T ) = ηm,

respectively, with the effective diameter σ0(ρ, T ) obtained using any of the
perturbative schemes. Similarly, admitting that there is a glass transition in
the HS fluid at the packing fraction ηg � 0.56 [182], one can now determine
the location of the liquid–glass transition line for the LJ fluid in the (ρ, T )
plane from the simple relationship (π/6)ρσ3

0(ρ, T ) = ηg. With a proper choice
for ZHS, it has been shown [93, 183, 184] that the critical point, the structure,
and the phase diagram (including a glass transition) of the LJ fluid may be
adequately described with this approach.
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6.6 Perspectives

In this chapter, we have given a self-contained account of a simple (mostly
analytical) framework for the study of the thermodynamic and structural
properties of hard-core systems. Whenever possible, the developments have
attempted to cater for mixtures with an arbitrary number of components (in-
cluding polydisperse systems) and arbitrary dimensionality. We started con-
sidering the contact values of the RDF because they enter directly into the
EOS and are required as input in the RFA method to compute the structural
properties. With the aid of consistency conditions, we were able to devise var-
ious approximate proposals which, when used in conjunction with a sensible
choice for the contact value of the RDF of the single-component fluid (required
in the formulation but otherwise chosen at will), have been shown to be in
reasonably good agreement with simulation results and lead to accurate EOS
both for additive and for non-additive mixtures. Some aspects of the results
that follow from the use of these EOS were illustrated by looking at demixing
problems in these mixtures, including the far from intuitive case of a binary
mixture of non-additive hard spheres in infinite dimensionality.

After that, restricting ourselves to three-dimensional systems, we described
the RFA method as applied to a single-component HS fluid and to a multi-
component mixture of HS. Using this approach, we have been able to obtain
explicit analytical results for the RDF, the direct correlation function, the
static structure factor, and the bridge function, in the end requiring as input
only the contact value of the RDF of the single-component HS fluid (or equiv-
alently its compressibility factor). One of the nice assets of the RFA approach
is that it eliminates the thermodynamic consistency problem which is present
in most of the integral equation formulations for the computation of struc-
tural quantities. Once again, when a sensible choice for the single-component
EOS is made, we have shown, through the comparison between the results of
the RFA approach and simulation data for some illustrative cases, the very
good performance of our development. Also, the use of the RFA approach in
connection with some other related systems (sticky hard spheres, square-well
fluids, and hard disks) has been addressed.

The final part of the chapter concerns the use of HS results for more
realistic intermolecular potentials in the perturbation theory of liquids. In
this instance, we have been able to provide a unifying scheme in which the
most popular perturbation theory formulations may be expressed and which
was devised to allow for easy computations. We illustrated this for a LJ fluid,
but it should be clear that a similar approach might be followed for other
fluids, and in fact, it has recently been done in connection with the glass
transition of hard-core Yukawa fluids [185].

Finally, it should be clear that there are many facets of the equilibrium and
structural properties of hard-core systems that may be studied with a simi-
lar approach but that up to now have not been considered. For instance, the
generalizations of the RFA approach for systems such as hard hyperspheres,
non-additive hard spheres, square-well mixtures, penetrable spheres [186], or
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the Jagla potential [187], appear as interesting challenges. Similarly, the ex-
tension of the perturbation theory scheme to the case of LJ mixtures seems
a worthwhile task. We hope to address some of these problems in the future
and would be very much rewarded if some others were taken up by researchers
who might find these developments also a valuable tool for their work.
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47. A. Malijevský, J. Veverka: Phys. Chem. Chem. Phys. 1, 4267 (1999)
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86. S.B. Yuste, A. Santos, M. López de Haro: Europhys. Lett. 52, 158 (2000)
87. H.-O. Carmesin, H.L. Frisch, J.K. Percus: J. Stat. Phys. 63, 791 (1991)
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101. M. López de Haro, A. Santos, S.B. Yuste: J. Chem. Phys. 124, 236102 (2006)
102. L.L. Lee: J. Chem. Phys. 103, 9388 (1995)
103. L.L. Lee, D. Ghonasgi, E. Lomba: J. Chem. Phys. 104, 8058 (1996)
104. L.L. Lee, A. Malijevský: J. Chem. Phys. 114, 7109 (2001)
105. S. Lab́ık, A. Malijevský: Mol. Phys. 53, 381 (1984)
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244 M. López de Haro et al.

124. J.W. Perram, E.R. Smith: Proc. R. Soc. London A 353, 193 (1977)
125. W.G.T. Kranendonk, D. Frenkel: Mol. Phys. 64, 403 (1988)
126. C. Regnaut, J.C. Ravey: J. Chem. Phys. 91, 1211 (1989)
127. G. Stell, Y. Zhou: J. Chem. Phys. 91, 3618 (1989)
128. J.N. Herrera, L. Blum: J. Chem. Phys. 94, 6190 (1991)
129. A. Jamnik, D. Bratko, D.J. Henderson: J. Chem. Phys. 94, 8210 (1991)
130. S.V.G. Menon, C. Manohar, K.S. Rao: J. Chem. Phys. 95, 9186 (1991)
131. Y. Zhou, G. Stell: J. Chem. Phys. 96, 1504 (1992)
132. E. Dickinson: J. Chem. Soc. Faraday Trans. 88, 3561 (1992)
133. C.F. Tejero, M. Baus: Phys. Rev. E, 48, 3793 (1993)
134. K. Shukla, R. Rajagopalan: Mol. Phys. 81, 1093 (1994)
135. C. Regnaut, S. Amokrane, Y. Heno: J. Chem. Phys. 102, 6230 (1995)
136. C. Regnaut, S. Amokrane, P. Bobola: Prog. Colloid Polym. Sci. 98, 151 (1995)
137. Y. Zhou, C.K. Hall, G. Stell: Mol. Phys. 86, 1485 (1995)
138. J.N. Herrera-Pacheco, J.F. Rojas-Rodŕıguez: Mol. Phys. 86, 837 (1995)
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